

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

ELECTRICAL AND ELCTRONICS ENGINEERING DEPARTMENT

UNIVERSITY EXAMINATION FOR:

BSC ELECTRICAL AND ELECTRONICS ENGINEERING

EEE2519 DIGITAL FILTERS

END OF SEMESTER EXAMINATION

SERIES: SEPT 2017

TIME: 2 HOURS

DATE:

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **five** Questions; Question ONE is compulsory. In addition attempt any Other TWO Questions.

Do not write on the question paper.

Question ONE (Compulsory)

- (a) (i) Explain the applications of a digital signal processing system in digital sound audio effects.
 - (ii) With appropriate equations describe how the following effects are obtained for an audio sequence x(n).
 - (I) Echo
 - (II) Flanging and chorusing
 - (III) Reverberation

(7 marks)

- (b) (i) State the expression for DFT and write it in matrix form for a sequence of length n = 4.
 - (ii) State the **FOUR** properties of the twiddle factor.

(8 marks)

- (c) (i) State the expression for Digital convolution.
 - (ii) Determine the convolution of two sequences:

x(n) = 1, 2, 1, 2, 1 and h(n) = 2, 1, -1, 1

(4 marks)

(d) (i) Determine the circular convolution of h(n) = [1, 2, -1, 1] and x(n) = [1.5, 2, 0, 1]

- (ii) Use overlap add method to determine the convolution of x(n) = [1, 3, 2, -3, 0, 2, -1, 0, -2] and h(n) = [1, 0, 1,]
- (iii) Realize the following IIR filter using:
 - (I) Direct form 1
 - (II) Canonical form
 - $H(z) = 2 3Z^{-1} + 4Z^{-3}/1 + 0.2Z^{-1} 0.3Z^{-3} + 0.5Z^{-4}$

(11 marks)

Question TWO

Use bilinear transformation of Butterworth filter with the following specifications.

$$0.89125 \le \left| He^{jw} \right| \le 1 \qquad 0 \le w \le 0.2\pi$$
$$\left| He^{jw} \right| \le 0.17783 \qquad 0.3\pi \le w \le \pi$$

To:

(a)	Compute order of filter	(9 marks)
(b)	Locate poles on S plane	(3 marks)
(c)	Determine discrete transfer function	(4 marks)
(d)	Plot magnitude and delay responses	(4 marks)

Question THREE

- (a) Show that the decimation in time and in place Radix two fast Fourier transform may be used to compute the DFT of a sequence. (10 marks)
- (b) Use Decimation in time and in place radix two fast fourier transform to compute the DFT of:

x(n) = [0, 2, 3, 4, 3, 4, 2, 0]

Question FOUR

(a)	Derive the general form of Discrete Fourier transform pair.	(10 marks)	
(b)	Determine and plot the magnitude and phase response a unit discrete see	sequence:	
	$h(n) = 1, \ 0 \le n - 1$	(10 marks)	

Question FIVE

- (a) Describe using appropriate equations the application of digital in the following operations:
 - (i) Noise reduction
 - (ii) 1st order 11R smoothing
 - (iii) Notch filter
 - (iv) Comb filter

(12 marks)

- (b) With the aid of a diagram and equations show the necessary conditions for an LTI system to be:
 - (I) Stable
 - (II) Causal

(8 marks)