

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR:

Bachelor of Science in Electrical and Electronic Engineering

EEE 2404: POWER ELECTRONICS II

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

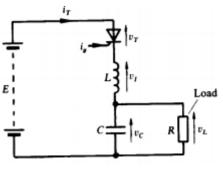
DATE: Pick DateSelect MonthPick Year

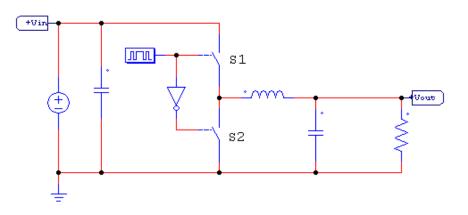
Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **five** Questions; Answer any THREE Questions. **Do not write on the question paper.**

Question ONE

a) Figure Q1 shows a circuit that is used to control the load power. Describe its operation. Include the waveforms of the six, voltages and currents indicated. (8 marks)




Figure Q1

- b) An ideal chopper operating at a frequency of 500 Hz supplies a load of 3Ω having an inductance of 9 mH from a 60 V battery. Assuming the load is shunted by a perfect commutating diode, and the battery is lossless,
 - (i) Determine the load current waveform for on/off ratios of:
 - I 1/1
 - II 4/1
 - III 1/4
 - (ii) Calculate the mean voltage and current at each setting in (i). (12 marks)

Question TWO

- a) Draw the circuit diagram of a buck converter using ideal switch and ideal diode and explain its operation. Sketch the equivalent circuit for the operational conditions assuming continuous conduction mode. (9 marks)
- b) Figure Q2 is a circuit diagram of an ideal synchronous buck regulator using ideal switches. Given that it is switching at 200 kHz, input voltage is **27.2V**, output voltage is **13.6V**, output load is 1.36Ω and peak to peak ripple current in inductor is 4A, determine:
 - (i) Period, Duty cycle, T_{off} , T_{on} of the low side switch.
 - (ii) Output power, Average Input current.
 - (iii) The Value of the inductance, Average inductor current.
 - (iv) The value of the capacitance needed to obtain a 20mVpp ripple.
 - (v) Draw the inductor current waveform for two periods.

Question THREE

Figure Q2

- a) With reference to full bridge dc-dc converter,
 - (i) differentiate between PWM with bipolar voltage switching and PWM with unipolar voltage switching.
 - (ii) Explain the term 'blanking time' (3 marks)
- b) In a full-bridge dc-dc converter utilizing PWM bipolar voltage switching, $v_{control} = 0.5 V_{tri}$. Obtain V_o and I_d in terms of given V_d and I_o . By Fourier analysis, calculate the amplitudes of the switching-frequency harmonics in v_o and i_d . Assume that $i_o(t) = I_o$.

Question FOUR

- a) Give ONE disadvantage and TWO disadvantages of high switching frequency in inverters.
 (3 marks)
- b) In the circuit of Figure Q4, $V_d = 300$, $m_a = 0.8$, $m_f = 39$, and fundamental frequency is 47 Hz. Use Table Q4 to calculate the rms voltage values at:
 - (i) the fundamental frequency
 - (ii) harmonic frequencies of 37, 77 and 115.

(8 marks)

ma					
h	0.2	0.4	0.6	0.8	1.0
1	0.2	0.4	0.6	0.8	1.0
Fundamental				_	
m _f	1.242	1.15	1.006	0.818	0.601
$m_f \pm 2$	0.016	0.061	0.131	0.220	0.318
$m_f \pm 4$					0.018
$2m_f \pm 1$.	0.190	0.326	0.370	0.314	0.181
$2m_f \pm 3$		0.024	0.071	0.139	0.212
$2m_f \pm 5$				0.013	0.033
3m _f	0.335	0.123	0.083	0.171	0.113
$3m_f \pm 2$	0.044	0.139	0.203	0.176	0.062
$3m_f \pm 4$		0.012	0.047	0.104	0.157
$3m_f \pm 6$				0.016	0.044
$4m_f \pm 1$	0.163	0.157	0.008	0.105	0.068
$4m_f \pm 3$	0.012	0.070	0.132	0.115	0.009
$4m_{f} \pm 5$			0.034	0.084	0.119
$4m_{f} \pm 7$				0.017	0.050

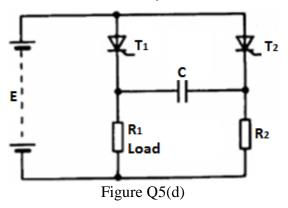
Table O4: Generalized Harmonics of v_{Ao} for a Large m_f .

Note: $(\hat{V}_{Ao})_{h}/\frac{1}{2}V_{d}$ [= $(\hat{V}_{AN})_{h}/\frac{1}{2}V_{d}$] is tabulated as a function of m_{a} .

- c) In a single-phase full-bridge PWM inverter, the input dc voltage varies in the range 295-325V. Due to low distortion requirements in the output voltage v_0 , $m_a = 1.0$.
 - (i) Determine the highest V_{o1} that can be obtained and indicated on its nameplate as its voltage rating.
 - (ii) Its nameplate volt-ampere rating is specified as 2000 VA, that is $V_{o1}max \times I_{o}max$, where i_o is assumed to be sinusoidal. Calculate the combined switch utilization ratio when the inverter is supplying its rated volt-ampere. (9 marks)

Question FIVE

- a) Differentiate between ;
 - (i) Equation solvers and circuit oriented simulations.
 - (ii) Differentiate between load resonant and resonant switch converters


(4 marks)

b) Draw a diagram of a half-bridge series loaded converter and explain its operation.

- c) Explain the effects of the following disturbances:
 - (i) Overvoltage
 - (ii) Voltage spikes
 - (iii) harmonics.

(3 marks)

- d) A parallel capacitor chopper of Figure Q5(d) has a load of 5Ω supplied from a 24V battery. The required turn-off time for thyristor T₁ is 60μ S. Determine:
 - (i) the size of capacitor.
 - (ii) the appropriate minimum on-time for thyristor T_1 if $R_2 = 5R_1$ (7 marks)

