

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING UNIVERSITY SPECIAL/SUPPLEMENTARY EXAMINATIONS 2016/2017 FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING

EEE 2212: PHYSICAL ELECTRONICS II

END OF SEMESTER EXAMINATIONS

SERIES: MAY, 2016

TIME: 2 HOURS PAPER 2

INSTRUCTIONS:

- 1. You should have the following for this examination: □ Answer booklet
 - □ Non-Programmable Scientific calculator
- 2. This paper consists of **FIVE** questions
- 3. Answer ANYTHREEQuestions.
- 4. All questions carry equal marks
- 5. Do not write on the question paper.

5. This paper consists of FOUR printed pages.

Question ONE

- (a) Name any **TWO**:
 - (i) Electro-optical transducers
 - (ii) Opto-electronic transducers

(2 marks)

- (b) (i) Explain the photoconductive effect.
 - (ii) Hence explain how the energy gap of a semi-conductor can be measured.

(5 marks)

- (c) Describe the principle of operation and the shape of the typical characteristics curves of the following devices:
 - (i) Photoconductive cell
 - (ii) Bipolar phototransistor
 - (iii) Solar cell

- (d) For each of the devices mentioned in (c) above:
 - (i) Draw circuit symbol
 - (ii) State the material used in construction
 - (iii) Mention one application

(4.5 marks)

Question TWO

- (a) Define Field-Effect Transistor.
- (b) Consider an enhancement and a depletion type MOSFET.
 - (i) Draw the circuit symbols
 - (ii) Explain the reason for the gap separating the gate from the rest of the symbol.
 - (iii) Explain also the solid line in the depletion MOSFET and a broken line in the enhancement MOSFET.

(6.5 marks)

(c) In practice JFETs have an symmetrical structure. Show the relationship between $I_{D(sat)}$ and V_{Dss} is found to be approximately:

$$I_{D(sat)} = V_{Dss} \left(1 - \frac{V_{Gs}}{V_p} \right)$$
(11 marks)

(c) Find the pinch-off voltage of a silicon p-channel FET having half channel height of 2 microns and channel resistivity of 10Ω -cm. Dielectric constant of silicon is 12 and mobility of holes is $500 \text{cm}^2/\text{Vs}$, $\varepsilon_0 = 8.849 \times 10^{-12} \text{F/M}$. (2.5 marks)

Question THREE

- (a) (i) Sketch the energy band diagram of NPN transistor at equilibrium and under normal biasing conditions.
 - (ii) Use this diagram to explain the operation of NPN transistor.

(6 marks)

- (b) (i) List **FOUR** modes of operation of bipolar junction transistor (BJT). State the biasing conditions of each mode.
 - Draw the static common emitter output characteristics for a low-power Silicon NPN BJT and indicate on it the regions corresponding to EACH of the modes of operation of a BJT.

(7.5 marks)

(c) Write the equations for the terminal currents of the ideal transistors in terms of four internal currents.

(3 marks)

- (d) (i) Find the collector current for a transistor when both emitter and collector junctions are reverse-biased. Assume $I_{CO} = 5\mu A$, $I_{EO} = 3.75\mu A$ and $\alpha_N = 0.98$.
 - (ii) Find the emitter current I_E under the same conditions as in (i) above.

(3.5 marks)

Question FOUR

(a) Consider UJT.

- (i) Draw the equivalent circuit and sketch the typical characteristics.
- (ii) Draw the circuit symbol.
- (iii) Explain the principle of operation.

(9.5 marks)

- (b) (i) With the aid of a sketch of the basic structure, explain the principle of operation of LED.
 - (ii) Explain **THREE** mechanisms of operation of LCD display.

(5.5 marks)

- (c) (i) Explain what is meant by "population inversion" of energy levels in a material.
 - (ii) Draw the I-V a characteristics of a solar cell with varying illumination as a parameter. Indicate on the characteristics of I_{SC} , V_{oc} and I_{dark} .

(5 marks)

Question FIVE

- (a) Draw a schematic diagram indicating the relative magnitudes of the various currents components in an NPN BJT operating in the active mode. (2.5 marks)
- (b) (i) Explain what the term "unipolar" refers to?
 - (ii) State **FIVE** advantages of the FET over the BJT.

(3 marks)

- (c) Briefly describe the base width modulation in BJT operation. (4.5 marks)
- (d) (i) Sketch the basic structure of V-MOS and explain its principle of operation.
 - (ii) State **FOUR** advantages of V-MOS power FET.

(6 marks)

(e) Calculate the punch-through voltage for an NPN silicon transistor of the alloy type if $W = 1 \mu m$ and the resistivity, pB of the base.

0.5 Ω , $\varepsilon_r = 12$, $\varepsilon_o = 8.849 \times 10^{12} F/M$, $\mu_p = 500 cm^2/Vs$ (4 marks)