TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Engineering and Technology
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING UNIVERSITY EXAMINATIONS 2016/2017
FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING

EEE 2210:ANALOGUE ELECTRONICS II

END OF SEMESTER EXAMINATIONS

SERIES: MAY, 2016
TIME: 2 HOURS

INSTRUCTIONS:

1. You should have the following for this examination:
\square Answer booklet
\square Non-Programmable Scientific calculator
2. This paper consists of FIVE questions
3. Answer QUESTION ONE and other TWO Questions.
4. Do not write on the question paper.
5. This paper consists of FOUR printed pages.

Question ONE

(a) Consider Fig.Q1, CE circuit. Draw:
(i) DC load line
(ii) AC load line
(iii) Determine the maximum peak-to-peak signal that can be obtained
(14.5 marks)

Fig. Q1
(b) (i) State at least THREE reasons for the popular use of h-parameters.
(ii) A transistor used in CE arrangement had the following set of h-parameters when the d.c operating point is:
$\mathrm{V}_{\mathrm{CE}}=15 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$.
$\mathrm{H}_{\mathrm{ie}}=2500 \Omega, \mathrm{~h}_{\mathrm{oe}}=10^{-4} \mathrm{mho}, \mathrm{h}_{\mathrm{ie}}=10^{-3}, \mathrm{~h}_{\mathrm{fe}}=40$

The as load line seen by the transistor is $r_{L}=500 \Omega$. Determine the Approximate values using reasonable approximation of the following:
(I) Input impedance
(II) Current gain
(III) Voltage gain and comment on its sign.
(c) (i) Discuss negative feedback in amplifiers.
(ii) Consider an amplifier of 60 dB gain, output impedance $f_{o}=10 \mathrm{k} \Omega$. It is required to modify its output impedance to 500Ω by applying negative feedback.
Calculate:
(I) The value of the feedback.
(II) The percentage change in the overall gain for 10% change in the gain of the interval amplifier.

Question TWO

(a) For the transistor amplifier show in Fig. $\mathrm{Q} 2, \mathrm{~h}_{\mathrm{ie}}=1.5 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{fe}}=100, \mathrm{~h}_{\mathrm{re}}=3 \times 10^{-4}$, $\mathrm{h}_{\mathrm{oe}}=25 \mu \mathrm{mhos}=\frac{1}{40 k}$. Calculate $:$
(i) A_{i}
(ii) R_{i}
(iii) A_{v}
(iv) x / o

Fig. Q2
(c) Consider a Silicon Controlled Rectifier (SCR).
(i) Draw the circuit symbol
(ii) Briefly describe the principle of operation.
(3.5 marks)

Question THREE

(a) Name the FOUR basic arrangements for using negative feedback and the block diagrams to differentiate them.
(8 marks)
(b) With the aid of a block diagram show how negative feedback can increase the input impedance of an amplifier.
(4 marks)
(c) Consider the amplifier of 60 dB . A negative feedback of $\beta=0.005$ is applied. Determine the change in overall gain of the feedback amplifier if the interval amplifier is subjected to a gain reduction of 10%.
(8 marks)

Question FOUR

(a) (i) Draw the circuit of a generalized FET amplifier with a source resistance R_{s} and a draw resistance R_{d}.
(ii) Draw the small-signal equivalent circuit of (a)(i).
(iii) Determine the Thevenin's equivalent circuit looking into the drain at low frequency.
(11.5 marks)
(b) Define:
(i) Transconductance, gm
(ii) Dain resistance, rd
(iii) Pinch off voltage
(iv) Amplification factor, μ
(c) In an FET amplifier, the load resistance $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{RG}=1 \mathrm{~m} \Omega, \mathrm{R}_{\mathrm{s}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{s}}=25 \mu \mathrm{~F}$, $\mu=25, r_{d}=80 \mathrm{k} \Omega$. If the input signal voltage is 0.1 V at a frequency of $1 \mu \mathrm{~Hz}$, find the output signal voltage of the amplifier.
(4.5 marks)

Question FIVE

(a) Consider a triac:
(i) Draw the basic structure diagram
(ii) Draw the circuit symbol.
(iii) I-V characteristics
(iv) Briefly describe the principle of operation
(v) State at least two applications
(14.5 marks)
(b) A given silicon UJT has an inter-base resistance of $8 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{BI}}=5 \mathrm{k} \Omega$, with $\mathrm{I}_{\mathrm{E}}=0$, find: (i) UJT current if $\mathrm{V}_{\mathrm{BB}}=30 \mathrm{~V}$ VE is less V_{P}
(ii) Z and standoff voltage
(iii) Peak point voltage, V_{p}
(5.5 marks)

