

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING UNIVERSITY EXAMINATIONS 2016/2017 FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING

EEE 2210:ANALOGUE ELECTRONICS II

END OF SEMESTER EXAMINATIONS

SERIES: MAY, 2016

TIME: 2 HOURS

INSTRUCTIONS:

- 1. You should have the following for this examination: \Box Answer booklet
 - □ Non-Programmable Scientific calculator
- 2. This paper consists of **FIVE** questions
- 3. Answer **QUESTION ONE** and other TWO Questions.
- 4. Do not write on the question paper.

5. This paper consists of FOUR printed pages.

Question ONE

- (a) Consider Fig.Q1, CE circuit. Draw:
 - (i) DC load line
 - (ii) AC load line
 - (iii) Determine the maximum peak-to-peak signal that can be obtained

(14.5 marks)

(b) (i) State at least **THREE** reasons for the popular use of h-parameters.

(ii) A transistor used in CE arrangement had the following set of h-parameters when the d.c operating point is:

 $V_{CE} = 15V$ and $I_C = 1mA$.

 $H_{ie} = 2500\Omega$, $h_{oe} = 10^{-4}$ mho, $h_{ie} = 10^{-3}$, $h_{fe} = 40$

The as load line seen by the transistor is $r_L = 500\Omega$. Determine the Approximate values using reasonable approximation of the following:

- (I) Input impedance
- (II) Current gain
- (III) Voltage gain and comment on its sign.
- (c) (i) Discuss negative feedback in amplifiers.
 - (ii) Consider an amplifier of 60dB gain, output impedance $f_o = 10k\Omega$. It is required to modify its output impedance to 500 Ω by applying negative feedback. Calculate:
 - (I) The value of the feedback.
 - (II) The percentage change in the overall gain for 10% change in the gain of the interval amplifier.

Question TWO

(a) For the transistor amplifier show in Fig. Q2, $h_{ie} = 1.5k\Omega$, $h_{fe} = 100$, $h_{re} = 3 \times 10^{-4}$,

- (c) Consider a Silicon Controlled Rectifier (SCR).
 - (i) Draw the circuit symbol
 - (ii) Briefly describe the principle of operation.

(3.5 marks)

Question THREE

(a) Name the **FOUR** basic arrangements for using negative feedback and the block diagrams to differentiate them.

(8 marks)

(b) With the aid of a block diagram show how negative feedback can increase the input impedance of an amplifier.

(4 marks)

(c) Consider the amplifier of 60dB. A negative feedback of $\beta = 0.005$ is applied. Determine the change in overall gain of the feedback amplifier if the interval amplifier is subjected to a gain reduction of 10%.

(8 marks)

Question FOUR

- (a) (i) Draw the circuit of a generalized FET amplifier with a source resistance R_s and a draw resistance R_d .
 - (ii) Draw the small-signal equivalent circuit of (a)(i).
 - (iii) Determine the Thevenin's equivalent circuit looking into the drain at low frequency.

(11.5 marks)

- (b) Define:
 - (i) Transconductance, gm
 - (ii) Dain resistance, rd
 - (iii) Pinch off voltage
 - (iv) Amplification factor, μ

(4 marks)

(c) In an FET amplifier, the load resistance $R_L = 10k\Omega$, $RG = 1m\Omega$, $R_s = 1k\Omega$, $C_s = 25\mu$ F, $\mu = 25$, $r_d = 80k\Omega$. If the input signal voltage is 0.1V at a frequency of 1µHz, find the output signal voltage of the amplifier.

(4.5 marks)

Question FIVE

- (a) Consider a triac:
 - (i) Draw the basic structure diagram
 - (ii) Draw the circuit symbol.
 - (iii) I-V characteristics

- (iv) Briefly describe the principle of operation
- (v) State at least two applications

(14.5 marks)

- (b) A given silicon UJT has an inter-base resistance of $8k\Omega$, $R_{BI} = 5k\Omega$, with $I_E = 0$, find:
 - (i) UJT current if $V_{BB} = 30V$ VE is less V_P
 - (ii) Z and standoff voltage
 - (iii) Peak point voltage, V_p

(5.5 marks)