EEE4350 : DIGITAL ELECTRONICS \& DEVICES
END OF SEMESTER EXAMINATION
SERIES : MAY 2016
TIME: 2 HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt Question ONE (Compulsory) and any other TWO Questions
Do not write on the question paper.

Question ONE
a. Show that $A \cdot(B \oplus C)=A . B \oplus A \cdot C$ (5 marks)
b. i. Use simple D.C. circuits comprising of a battery source, two switches and lamp to explain the logic functions of the following:
I. An "AND" gate
II. An "NOT" gate
ii. Draw the symbol and truth table for each gate
c. Perform the following operations:
i. $\quad 3 \mathrm{~F}_{16}-5 \mathrm{C}_{16}$ (using 2's complement)
ii. $\quad 36_{10}+63_{10}$ (using Excess-3 code)
iii. $11111_{2}-$ F.F ${ }_{16}$ (using Hexa subtraction)
d. Describe the following coding schemes that are used for the interchange of information:
i. ASCII code
ii. EBCDIC code
e. Use a Karnaugh Map to simplify the following Boolean expression:

$$
\begin{equation*}
F(w, x, y, z)=\bar{w} \bar{x} \bar{y} \bar{z}+\bar{w} \bar{x} \bar{y} z+\bar{w} \bar{x} y \bar{z}+\bar{w} x y \bar{z}+w \bar{x} \bar{y} \bar{z}+w \bar{x} \bar{y} z+w \bar{x} y \bar{z} \tag{5marks}
\end{equation*}
$$

f. Name and describe the two types of propagational delay time, t_{p}.

Question TWO

a. i. With the aid of a circuit diagram, explain the principle of operation of a 4-way multiplexer.
ii. Describe a data selector logic for a 4×2 system
iii. State one application of a multiplexer.
b. Design a BCD counter using JK flip-flops.

Question THREE

a. Explain TWO disadvantages of digital techniques over analogue techniques.
b. Describe the 2-bit logic comparator
c. i. Differentiate between static and dynamic shift registers
ii. Differentiate between synchronous and asynchronous counters

Question FOUR

a. Show how a NAND gate can be used to realize an XNOR gate
(4 marks)
b. Describe with an aid of a circuit how the OR gate can be used in industrial chemical control plant.
(8 marks)
c. Given the function $F(x, y, z)=x \bar{y} z+\bar{x} \bar{y} z+x y z$
i. Draw the truth table for F.
ii. Draw the logic diagram using the original Boolean expression.
iii. Simplify the expression using Boolean algebra and identities.
iv. Draw the logic diagram for the simplified expression.

Question FIVE

a. Explain what is meant by race around condition in J-K flip-flop.
(2 marks)
b. Draw a master-slave J-K flip-flop system. Explain its operation and show that the race-around condition is eliminated.
c. Perform the following operations:
i. $\quad 1978_{10}$ to binary
ii. 10101100111_{2} to Gray
iii. $\quad 57_{10}+98_{10}$ (using BCD)
iv. $\mathrm{AF}^{2} 0 \mathrm{E}_{16}$ to BCD

