TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
 DIPLOMA IN BUILDING AND CIVIL ENGINEERING
 EBC 2207: THEORY OF STRUCTURES II
 END OF SEMESTER EXAMINATION

SERIES: APRIL 2016
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination

- Answer booklet
- Scientific calculator

This paper consists of FIVE questions
Answer any other THREE questions
Use neat, large and well labelled diagrams where required Maximum marks for each part of a question are as shown
This paper consists of THREE printed papers.

ECE 2207: THEORY OF STRUCTURES II

QUESTION ONE

a) Briefly explain the procedure for the determination of truss deflection (6 marks)
b) A cantilever 8 metres long is carrying a point load of 12 KN at the free end. Determine the slope and deflection at a point 4 metres from the fixed end. Take $\mathrm{E}=20 \mathrm{GPa}$ and $\mathrm{I}=360 \times 10^{6} \mathrm{~mm}^{4}$
c) Explain the procedure for the determination of slope and deflection by the McCauley's method
(6 marks)

QUESTION TWO

Figure Q2 below shows a pin-jointed truss ABCD carrying both a vertical and a horizontal load at joint B as indicated. Determine the vertical and horizontal displacement at joint B. Take $A E=100 \times 10^{3} \mathrm{KN}$.
(20 marks)

Figure Q2

QUESTION THREE

Figure Q3 shows a loaded simply supported beam. Determine the slope and deflection of the beam at the point under the point load by the McCauley's method. Take E=207GPa and $\mathrm{I}=10^{10} \mathrm{~mm}^{4}$ (20 marks)

Figure Q3

QUESTION FOUR

Figure Q4 below shows a simply supported beam of span 3.6 metres. It partially carries a uniformly distributed load of $1500 \mathrm{~N} / \mathrm{M}$ along its span, an anticlockwise moment of 1440 Nm is applied to the beam at a point C 1 metre from support A. Determine the slope and deflection at point C .
(20marks)

Figure Q4

QUESTION FIVE

Figure Q5 shows an overhanging beam carrying a uniformly distributed load of $1 \mathrm{KN} / \mathrm{m}$ Using the Mohr's moment area theorem determine the slope and deflection at point C . Take $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{I}=250 \times 10^{6} \mathrm{~mm}^{4}$
(20marks)

Figure Q5

