

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

AMA 5106: TEST OF HYPOTHESIS

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 3 HOURS

DATE: MAY

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of five questions. Attempt any three.

Do not write on the question paper.

Question ONE

- a. Let $x_1,x_2,...,x_n$ be independently identically distributed bin(1,p) random variable. Find a most powerful size α for H_0 ; $p=p_0$ where p_0 and p_1 are specified $(p_1>p_0)$ (7marks)
- b. Show that the 1 parameter exponential family $f(x;\theta) = \exp\{\Theta(\theta)T(x) + D(\theta) + S(x)\}$ has a Monotone Likelihood Ratio. (5 marks)
- c. Let the vector of random variables $x=(x_1,x_2,...,x_n)$ have the probability mass function $f(x;\theta)$ where $\{f(x;\theta),\theta\in\Omega\}$ have a monotone likelihood ratio T(x). Show that for testing

$$\boldsymbol{H}_0: \boldsymbol{\theta} \leq \boldsymbol{\theta}_0 \text{ against } \boldsymbol{H}_1: \boldsymbol{\theta} > \boldsymbol{\theta}_0 \text{ any test of the form } \boldsymbol{\phi}(\boldsymbol{x}) = \begin{cases} 1 & \textit{if} & T(\boldsymbol{x}) > t_0 \\ \boldsymbol{v} & \textit{if} & T(\boldsymbol{x}) = t_0 \text{ has a non-loop} \\ 0 & \textit{if} & T(\boldsymbol{x}) < t_0 \end{cases}$$

decreasing power function and is uniform most powerful test. (8marks)

d. Define a consistent test (4 marks)

e. Define a uniformly most powerful test (6marks)

Question TWO

- a. Show that if a sufficient statistics T exists for the family $\{f(x;\theta),\theta\in\Omega\}$ $\Omega=\{\theta_0,\theta_1\}$ then the Neyman-Pearson Most powerful test is a function of T. (10 marks)
- b. The heat evolved in calories per gram of a cement mixture is approximately normally distributed. The mean is thought to be 100 and the standard deviation is 2. We wish to test H_0 ; $\mu = 100$ versus H_1 ; $\mu \neq 100$ with a sample of n = 9 specimens.
 - i. If the acceptance region is defined as $98.5 \le \overline{x} \le 101.5$, find the type I error probability (3 marks)
 - ii. Find the type two error for the case where the true mean heat evolved is 103 . (3marks)
 - iii. Find the power of the test for the case where the true mean heat evolved is 105.
 This value (4 marks)

Question THREE

- a. Define the likelihood ratio test (7 marks)
- b. Show that if $\{f(x;\theta),\theta\in\Omega\}$ admits a sufficient statistics T then for testing $H_0;\theta\in\Omega_0$ against $H_1;H_0;\theta\in\Omega-\Omega_0$ likelihood ratio test a function of the sufficient statistics. (3marks)
- c. Let $x_1, x_2, ..., x_n$ be independently identically distributed $N(\mu, \sigma^2)$ random variables. Find a size α likelihood ratio test for testing H_0 ; $\mu = \mu_0$ against H_1 ; $\mu \neq \mu_0$ (10 marks)

Question FOUR

- a. Let $X \sim bin(n,p)$ if $n \to \infty$ and p is close to Let $\frac{1}{2}$, find a size Let α approximate uniform most powerful unbiased test for H_0 ; $p=p_0$ against H_1 ; $p=p_1$ (10 marks)
- b. Let $x_1, x_2, ..., x_n$ be independently identically distributed $N(0, \sigma^2)$ random variables. Determine a uniform most powerful unbiased test for the hypothesis of the form $H_0; \sigma^2 = \sigma_0^2$ against $H_1; \sigma^2 = \sigma_1^2$ (10 marks)

Question FIVE

a. Let $x_{i1}, x_{i2}, ..., x_{in}$ be independently identically distributed $N(\mu_i, \sigma_i^2)$ random variables for i=1,2,...,k. Find a size α LRT test for $H_0; \mu_i=\mu_j$ against $H_1; \mu_i\neq\mu_j$ (15 marks)

b. Show that for testing H_0 ; $\theta_1 \leq \theta \leq \theta_2$ against H_1 ; $\theta < \theta_1$ or $\theta > \theta_2$ there exists a uniform most powerful unbiased size α test given by $\phi(x) = \begin{cases} 1 & \text{if} & T(x) > c_1 \\ v & \text{if} & T(x) = c_2 \\ 0 & \text{if} & c_1 < T(x) < c_2 \end{cases}$ (5 marks)