TECHNICAL UNIVERSITY OF MOMBASA BFSQ/BTAC

A

AMA4109: CALCULUS FOR SCIENCES

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE (30MARKS)

(a) If $A=\{x \mid-3 \leq x \leq 2, x \in \square\}$ and a function $f: A \rightarrow \square$ is defined by $f(x)=x^{2} \forall x \in A$, find the range of f and state whether it is onto or not.
(b) Find the derivatives of the following functions with respect to x
(i) $y=x^{5} \sin x$.
(ii) $x^{3}+3 y^{6}=y^{3}$.
(c) Evaluate the following limits
(i) $\lim _{x \rightarrow-1} \frac{x+1}{x^{2}-1}$.
(3mks)
(ii) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x$.
(3mks)
(d) (i) Use first principles to differentiate $f(x)=x^{2}+2$.
(3mks)
(ii) Hence use the result in (i) to find the tangent line to $f(x)$ at $x=-2$.
(e) Find the following integrals
(i) $\int 20 x\left(x^{2}+3\right)^{7} d x$.
(ii) $\int x e^{-x^{2}} d x$.
(f) Given that $x=t^{3}-3 t^{2}$ and $y=t^{3}-3 t$, find $\frac{d y}{d x}$.

QUESTION TWO (20MKS)

(a) Suppose $f(2)=11, f^{\prime}(2)=12, g(2)=7$ and $g^{\prime}(2)=4$.Evaluate

$$
\begin{equation*}
\left(\frac{f}{g}\right)^{\prime}(2)+(f g)^{\prime}(2) \tag{3mks}
\end{equation*}
$$

(b) (i) Let f be a function defined at points near a (except possibly at a). Let L be a real number. Use $\varepsilon-\delta$ notation to define L as a limit of f.
(ii) Use the definition in (i) to show that

$$
\begin{equation*}
\lim _{x \rightarrow 2} 2 x-3=1 \tag{4mks}
\end{equation*}
$$

(c) Let $f, g: \mathscr{R} \rightarrow \mathscr{R}$ such that $f(x)=x+1$ and $g(x)=x^{2}+3$.
(i) Compute $h=f_{O} g$.
(ii) Find f^{-1}, g^{-1} and h^{-1}.
(3mks)
(iii) Compute $g^{-1}{ }_{o} f^{-1}$, compare this to (ii) and make any relevant deduction.
(d) Show that if $y=\sec ^{-1} \sqrt{1+x^{2}}$ then $\frac{d y}{d x}=\frac{1}{1+x^{2}}$.

QUESTION THREE (20MKS)

(a) Suppose $g(x)=f^{-1}(x)$ and $G(x)=\frac{1}{g(x)}$.Given that $f(3)=2$, and $f^{-1}(3)=\frac{1}{9}$, find $G^{\prime}(2)$.
(b) Calculate the volume of the solid generated by rotating about the x-axis the area bounded by $f(x)=4-x^{2}$ and the x-axis.
(c) Find the linearization of $f(x)=\sqrt{x+3}$ at $x=1$ and use it to approximate $\sqrt{4.05}$.
(5mks)
(d) The parametric equations of a curve are $x=e^{t}$ and $y=\sin t$. Find $\frac{d y}{d x}$ and

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}} . \text { Hence show that } x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0 \tag{6mks}
\end{equation*}
$$

QUESTION FOUR (20MKS)

(a) Find the equation of the normal to the curve $y=x+\sqrt{x}$ at $(1,2)$.
(3mks)
(b) Find the absolute maximum and minimum of $f(x)=x^{3}-12 x+1$ on $\left.-3 \leq x \leq 5\right)$.
(4mks)
(c) Decompose the following rational fraction

$$
\begin{equation*}
\frac{2 x^{2}+6 x-4}{x(x+2)^{4}} \tag{4mks}
\end{equation*}
$$

(d)Air is being pumped into a spherical balloon so that its volume increases at $100 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the radius increasing when the diameter is 50 cm ?
(e) A particle P travels in a straight line and its distance x meters from a fixed point A on the line at time t seconds is given by $x=2 t^{3}-15 t^{2}+36 t+20$. Find the values of x at the points where the velocity is zero.

QUESTION FIVE(20MKS)

(a) Use logarithmic differentiation to find $\frac{d y}{d x}$
(i) $y=x^{2} \sqrt{(x+2)}$.
(ii) $y=\log _{2}\left(x^{3}+5\right)$
(b) Integrate
(i) $\int \frac{x^{2}}{\cos ^{2} x^{3}} d x$
(ii) $\int \theta^{2} \sin \theta d \theta$
(c) A metal sheet has measurements 8 by 5 metres. Equal squares of side x metres are removed from each corner and the edges are then turned up to make an open box of volume $\mathrm{V} \mathrm{m}^{3}$.
(i) Show that $V=40 x-26 x^{2}+4 x^{3}$.
(ii) Find the maximum possible volume and the corresponding value of x.

