TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MEDICAL ENGINEERING
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MEDICAL ENGINEERING
 AMA2351:ENGINEERING MATHEMATICS VI END OF SEMESTER EXAMINATION
 SERIES:APRIL2016
 TIME:2HOURS

DATE:9May2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

(a) Show that the equation $x^{4}+x^{2}=80$ has a root between 2 and 3 hence taking an appropriate approximation determine the root correct to two decimal places.
(b) Determine the Maclaurin series for the following:
(i) $\ln (1+x)$
(ii) $\ln (1-x)$
(c) Use Newton-Raphson formula to determine $\sqrt[4]{9}$ correct to six decimal places.

Question TWO

(a) Using Maclaurin series, determine the power series for the function $f(x)=\frac{2+x}{(2-x)^{4}}$ as far as term in degree three hence evaluate $\int_{o}^{1} \frac{(x+3)(2+x)}{(2-x)^{4}} d x$.
(10 marks)
(b) Given that $f(2.3145)=0.004545, f(2.3146=0.004544$ use linear interpolation and
extrapolation to determine $f(2.31445)$ and $f(2.314655)$.

Question THREE

Use Newton-Raphson formula to show a better approximation for the equation $x^{3}+5 x^{2}-10 x-20=0$ hence determine the root correct to five decimal places taking $\quad x_{o}=-1.5$.
(10 marks)
(b) Using Taylor theorem:
(i) Expand $\sin \left(\frac{x}{6}+h\right)$ in ascending powers of h upto the term in degree four.
(ii) Approximate $\sin 29.5^{\circ}$.
(10 marks)

Question FOUR

(a) Use Taylor approximation to express $\tan \left(\frac{x}{6}+h\right)$ as a polynomial in h as far as h^{3} hence estimate $\tan 34^{\circ}$ correct to five decimal places.
(b) Determine the Maclaurin series for $f(x)=\frac{5+x}{(5-x)^{3}}$ as far as the term in degree three hence evaluate $\int_{o}^{1}(x-7) f(x) d x$.

Question FIVE

(a) The table below shows values for a function $f(x)$. Use Newton-Gregory interpolation to evaluate.
(i) $\quad f(4.5)$
(ii) $\quad f(6.4)$

x	4	5	6	7	8	9	10
$f(x)$	-10	12	56	128	234	380	572

(b) Use Maclaurin series to:
(i) Prove Binomial expansion
(ii) Determine series for $y=\tan ^{-1} x$ (10 marks)

