

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

AMA2351: ENGINEERING MATHEMATICS VI

END OF SEMESTER EXAMINATION

SERIES:APRIL2016

TIME:2HOURS

DATE:9May2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

Question ONE

- (a) Show that the equation $x^4 + x^2 = 80$ has a root between 2 and 3 hence taking an appropriate approximation determine the root correct to two decimal places. (10 marks)
- (b) Determine the Maclaurin series for the following:
 - (i) $\ln(1+x)$
 - (ii) ln(1-x)

(10 marks)

(c) Use Newton-Raphson formula to determine $\sqrt[4]{9}$ correct to six decimal places. (10 marks)

Question TWO

- (a) Using Maclaurin series, determine the power series for the function $f(x) = \frac{2+x}{(2-x)^4}$ as far as term in degree three hence evaluate $\int_0^1 \frac{(x+3)(2+x)}{(2-x)^4} dx$. (10 marks)
- (b) Given that f(2.3145) = 0.004545, f(2.3146 = 0.004544) use linear interpolation and extrapolation to determine f(2.31445) and f(2.314655). (10 marks)

Question THREE

Use Newton-Raphson formula to show a better approximation for the equation $x^3 + 5x^2 - 10x - 20 = 0$ hence determine the root correct to five decimal places taking $x_o = -1.5$. (10 marks)

- (b) Using Taylor theorem:
 - (i) Expand $\sin\left(\frac{x}{6} + h\right)$ in ascending powers of h upto the term in degree four.
 - (ii) Approximate $\sin 29.5^{\circ}$. (10 marks)

Question FOUR

- (a) Use Taylor approximation to express $\tan\left(\frac{x}{6} + h\right)$ as a polynomial in h as far as h³ hence estimate $\tan 34^{\circ}$ correct to five decimal places. (10 marks)
- (b) Determine the Maclaurin series for $f(x) = \frac{5+x}{(5-x)^3}$ as far as the term in degree three hence evaluate $\int_0^1 (x-7)f(x)dx$. (10 marks)

Question FIVE

- (a) The table below shows values for a function f(x). Use Newton-Gregory interpolation to evaluate.
 - (i) f(4.5)
 - (ii) f(6.4)

X	4	5	6	7	8	9	10
f(x)	-10	12	56	128	234	380	572

(10 marks)

- (b) Use Maclaurin series to:
 - (i) Prove Binomial expansion
 - (ii) Determine series for $y = \tan^{-1} x$ (10 marks)