

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

AMA2251: ENGINEERING MATHEMATICS IV

END OF SEMESTER EXAMINATION

SERIES: APRIL2016

TIME:2HOURS

DATE:9May2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

- a) An inductor, resistor and capacitor are connected all in series to a supply voltage Eo
 - i. derive an equation involving current and time
 - ii. solve for charge and current given that Eo = 40V , C = 250_F, L = 50mH, and R = 30. take i = 0 and q = 0
- iii. iii) form the circuit calculate the voltage across the components involved.

(10 marks)

b) Use Laplace transform to solve
$$2\frac{d^2x}{dt^2} + 3\frac{dx}{dt} - 5x = 6\sin 2t$$
 (10 marks)

c) Solve the following differential equation

i.
$$\frac{dy}{dx} = \frac{3}{x} - \frac{y}{x}$$

ii.
$$2y(1-x) = -(x+xy)\frac{dy}{dt}$$
(10 marks)

Question TWO

a) Use Laplace transform to solve the following differential equation $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 8x = 0$ given that x(0) = 4 and x'(0) = 8 (10 marks) ©*Technical University of Mombasa* Page 1 of 2 b) A body executes damped forced vibrations defined by the equation

 $\frac{d^2y}{dx^2} + 2k\frac{dy}{dx} + b^2y = e^{-kt}sin\omega t$. Solve the differential equation for the following conditions i. $\omega^2 = b^2 - k^2$ ii. $\omega^2 \neq b^2 - k^2$ (10 marks)

Question THREE

Using the substitution $x = e^t$

a. Express the differential equation x² d²y/dx² - 2y = x + 1 in the form a d²y/dx² + b dy/dx + cy = f(t)
b. Solve the equation in (a) above taking y = y, x = 1 and y' = 0.5 (20 marks)

Question FOUR

a) Solve $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 3x = t^3$ (10 marks) b) Solve the following simultaneous equation using Laplace transform given that t = 0, x = 4, y = 2x' = y' = 0 $\frac{d^2x}{dt^2} + 2x = y$ $\frac{d^2y}{dt^2} + 2y = x$ (10 marks)

Question FIVE

a) Solve the following differential equations

i.
$$x - y + x \frac{dy}{dx} = 0$$

ii. $\frac{dy}{dx} + x = 2y$ (10 mark)

b) Determine the inverse Laplace transform for the following

i.
$$\frac{5s^2 - 2s - 19}{(s+3)(s-1)^2}$$

ii. $\frac{2s^2 - 9s - 35}{(s+1)(s-2)(s+3)}$ (10 marks)