TECHNICAL UNIVERSITY OF MOMBASA

AMA 4214 CLASSICAL MECHANICS
2015/2016

END OF SEMESTER TWO YEAR TWO EXAMINATION FOR THE DEGREE OF MATHEMATICS AND COMPUTER SCIENCE

QUESTION ONE (30MARKS) COMPULSORY

a) A particle moves on a circle of radius R with a constant angular acceleration α. If the particle starts from rest, find the
i. Angular velocity
ii. Tangential velocity
iii. Tangential acceleration
iv. Magnitude of acceleration
b) Two cars A and B are travelling in the same direction with constant velocities V_{A} and V_{B} respectively. When car is a distance d behind B the brakes on A are applied causing a deceleration at a rate a. demonstrate that in order for the cars to collide, it is necessary that $V_{A}-V_{B} \geq \sqrt{2 a d}$
c) A car of mass 1000 kg moves uphill along a street inclined at 30° to the horizontal. Determine the force which the car must produce to move with
i. Uniform acceleration
ii. An acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$

Neglect the effect of friction
d) Show that for a conservative force field, the work done in moving a particle from points p_{1} to p_{2} is equal to the change in potential energy.
e) Prove that the torque on a particle is equal to the true rate of change in its angular momentum
f) Find the potential associated with a uniform force field.

