

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF PURE AND APPLIED SCINCES

DEPARTMENT OF MATHS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

UPGRADING MATHS

AMA 1003 CALCULUS

END OF SEMESTER EXAMINATION

MAY SERIES

TIME: 2HRS

MAY 2016

Instructions to Candidates You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of 5 questions. Answer Question One And Any Other Two Questions Do not write on the question paper.

QUESTION ONE (30MKS) B

- a. Determine the equation of a straight line passing through point A(2, 2) and B (1, 6) [3mks]
 - I. Evaluate $\lim_{x \to -3} \frac{x^2 9}{x + 3}$ [4mks]
 - II. Determine the maximum value of y if $y = -0.01x^2 + 20x + 100$ [5mks]

b. Find the gradient to the curve
$$y = \frac{2x-4}{x+2}$$
 at x=0 [4mks]

c. Find the equation of a normal to the curve $y = 2x^3 - 4x + 4$ at x=1 [6mks]

- d. find $g_0 f$ given g(x) = 2x 2 and $f(x) = 3x^2 + 2x + 2$ hence find $g_0 f(1)$ [4mks]
- e. evaluate $\int_0^1 [6x^2 + 2] dx$ [4mks]

QUESTION TWO [20MKS]

- a. Find f'(x) from first principles at x = 2 given $f(x) = 3x^2 + 2x$ [6mks]
- b. Evaluate $\frac{dy}{dx}$ at x=2 given $y = \frac{3x+4}{x+2}$ using quotient rule [4mks]
- c. Evaluate $\int_{1}^{3} [2x+4] dx$ [4mks]
- d. Investigate the nature of turning points to the curve $y = x^3 12x + 6$ [6mks]

QUESTION THREE [20MKS]

- a) Evaluate $\int_{2}^{4} [2x + 3x^2 + 3] dx$ [5mks]
- b. A straight line passes through A(3 2) B(4 6) and C (1, y) find the value of y [5mks]
- c. Determine inverse (f⁻¹(x)) of the function $f(x) = \frac{x}{2x+4}$ [5mks]
- d. determine the turning points of the curve $y = -2x^3 + 24x + 4$ [5mks]

QUESTION FOUR (20MKS)

- a. Given $h(x) = x^2 + 2x + 2$ and g(x) = 2x + 3 find i] *goh* (x) and hence evaluate *goh* (2) [5mks]
- b. Find the equation of a curve given that the gradient function of the curve, $\frac{dy}{dx} = 2x + 2$ and the curve passes through (2 6)[5mks]
- c. Use Simpson rule to evaluate $\int_{1}^{3} [x^2 + 2] dx$ [6mks]n=4 [4mks]

Determine the error in c)

QUESTION FIVE [20MKS]

a) Find $\frac{dy}{dx}$ at x=1 given II y= $(2x+4)^3$ using substitution

I]
$$y=(2x+4)^3$$
 using substitution [5mks]

II]
$$y = \frac{3x^2+2}{x+1}$$
 Using quotient rule [5mks]

b) Evaluate I] $\int_{0}^{2} [x - 2] dx$ [5mks]

$$\text{II} \int_0^2 4x^{-2} dx \qquad [5\text{mks}]$$