

TECHNICAL UNIVERSITY OF MOMBASA FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MEDICAL ENGINEERING UNIVERSITY EXAMINATION FOR: DIPLOMA IN MEDICAL ENGINEERING EHL 2104 : MEDICAL ELECTRONICS I END OF SEMESTER EXAMINATION SERIES: APRIL 2016 TIME: 2HOURS DATE:10May2016

Instructions to Candidates You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of five questions. Attempt question ONE (Compulsory) and any other TWO questions. Do not write on the question paper.

Question ONE

a)	a) i. Explain any THREE typical resistor parameters which are normally specified in a c								
	book (6 marks)								
	ii.	State any TWO advantages and disadvantages of carbon resistors	(4marks)						
b)									
	I. Doping								
	II.	Extrinsic semiconduction	(4 marks)						
	ii With the aid of diagrams explain how the following is achieved:								
	I.	Forward biased P-N junction							
	II.	Reverse biased P-N junction	(8 marks)						
c)	c) i. With the aid of a circuit diagram explain the operation of a half- wave rect								
			(6marks)						
ii.	Sta	ate any TWO advantages of a full wave rectifier over half wave rectifier	ier (2 marks)						
Quest	ion	TWO							
	a)	i. State three configurations of bi-polar junction transistor amplifier							
	ii. With the aid of a diagram explain the connection and operation of forward bia								
		NPN transistor.	(10 marks)						
	b) i. The figure Q2 below uses germanium transistor. Given that h_{FE} is 49 a Calculate:								
		I. Base current I_B							
		II. The value of R_B							
		III. The value of I_E	(6 marks)						

ii. State any **FOUR** merits of using emitter feedback circuit (4 marks)

Question THREE

i) A 6.8 voltage zener diode can be considered as a linear resistance of 10Ω in the breakdown region. It is used in a simple voltage stabilizing circuit to stabilize a load voltage of 7V from 12V supply. If the load 2.5K Ω .

I)	Draw a suitable circuit diagram	

II)	Calculate the value of the series resistor Rs	(6 marks)
-----	---	-----------

ii. Give any TWO practical applications of each of the following

- I. Ordinary P-N diode
- II. Zener diode (4 marks)
- a) With the aid of a suitable diagram explain the operation of a π filter (10 marks)

Question FOUR

- a) i) With the aid of a circuit diagrams explain how a capacitor can be used as a coupling and decoupling device
 - ii). State FOUR applications of capacitors (10 marks)
- b) i) Define the following passive components:-
 - I. Thermistor

	II.	Indu	uctor	(2 marks)					
	ii). With the aid of Resistance/Temperature characteristics curves describe the two								
	basic types of thermistors (8 mar								
Question FIVE									
	a) i. Explain the following terms as used in diode characteristics								
		I.	Peak inverse voltage						
		II.	Avalanche breakdown voltage	(4 marks)					
	ii.With the aid of a circuit diagram explain the operation of a full wave centre tap transformer rectifier								
	(6 marks)								
	iii. Derive an expression of the V_{mean} of the full-wave rectifier circuit (6 marks)								
	briefly any TWO types of electron emission	(4marks)							