

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN TECHNOLOGY (ELECTRICAL POWER ENGINEERING)(DEPE4)

EEP2206: POWER ELECTRONICS 1.

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt ANY THREE Questions
Do not write on the question paper.

Question ONE

- (a) (i) With he aid of a diagram describe the effects of an inductive load in single phase controlled rectifier circuits
- (ii) Draw the current and voltage waveforms of a(i) above if the input is sinusoidal a.c.
- (iii) A half-wave rectifier circuit employing an SCR is adjusted to have a gate current limit. The forward breakover voltage is 100V for a gate current of 1mA . If a sinusoidal voltage of 200V peak is applied, determine:
 - i. The firing angle
 - ii. The average voltage.

(13marks)

- (b) (i) State any TWO advantages of a thyristor as a switch over mechanical switching
 - (ii) Draw the anode characteristics of the SCR and explain the shape.

(7marks)

Question TWO

- (a) (i) Draw a labelled circuit diagram of a UJT relaxation oscillator.
 - (ii) Sketch the output waveforms for the circuit in a(i) and show that its output frequency is expressed as

$$f = \frac{1}{RC \ln\left(\frac{1}{1-\eta}\right)}$$

where f = frequency of the output waveform

 $\eta = intrinsic stand-off ratio$

(10marks)

- (b) (i) Draw the UJT characteristics and explain its shape
- (ii) The intrinsic stand-off ratio for a UJT is determined to be 0.6. If the interbase resistance is $10k\Omega$, determine:-
 - I. R_{B1}
 - II. R_{B2}

(10marks)

Question THREE

- (a) (i) Explain the TWO transistor analogy for an SCR using suitable diagrams.
 - (ii) Prove that the anode current expression for SCR is :-

$$I_A = -\left[\frac{I_{CO1} + I_{CO2}}{1 - (\alpha_1 + \alpha_2)}\right]$$

(10marks)

(b) (i) For a single phase half controlled rectifier show that the mean d.c power output is:-

$$P_{mean} = \frac{V_{max}^2(1 + \cos\alpha)^2}{4\pi^2 \ R_L}$$

(ii) A 100Ω resistance load is driven by $240V_{r.m.s}$ voltage for firing angle of 60° , determine the average power output.

(10marks)

Question FOUR

- (a) (i) Explain with aid of a diagram the operation of a TRIAC as a switch.
 - (ii) Draw the V-I characteristics of a DIAC and explain its shape.

(9marks)

- (b) (i) Draw the circuit diagram of a single phase cycloconvertor using a centre-tapped transformer
- (ii) Draw the output waveforms of the circuit b(i) above.
- c) A cycloconvertor designed for industrial application starts conducting from

$$\left\{\frac{-\pi}{p} + \alpha\right\}$$
 to $\left\{\frac{+\pi}{p} + \alpha\right\}$

Given the general equation for a cycloconvertor to be:

$$V_0 = \frac{1}{2\pi/p} \int V_{max} \cos wt \ dwt$$

Derive the expression for the mean voltage.

(11marks)

Question FIVE

- (a) (i) Explain the importance of a commutating diode in rectifier circuits
 - (ii) State any TWO advantages of pulse firing over other methods

(5marks)

(b) With the aid of output voltage waveforms of three phase controlled rectifier separately illustrate the following:-

Overlap angle

Inversion mode of thyristor operation

(8marks)

c)(i) Show that the mean output voltage of a three phase half wave controlled rectifier supplying a resistive load is given by:

$$V_{mean} = \frac{3\sqrt{3}}{2\pi} V_{max} \cos\alpha$$

Where $\alpha =$ firing angle

(ii) Determine the mean output voltage of $c(i)$ for a three phase input voltage of $415V_{r.m.s}$ if the firing angle is 30°	
(7marks)	
©Technical University of Mombasa Page 4 of 4	