TECHNICAL UNIVERSITY OF MOMBASA FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EEP 2104 CIRCUIT THEORY II
 SERIES: MAY 2016

Instructions

- This paper consists of FIVE questions
- Answer any THREE questions
- All Questions carry equal marks

QUESTION ONE

(a) A coil having resistance of 10Ω and inductance of 0.2 H is connected in series with a capacitor of capacitance $80 \mu \mathrm{~F}$ across a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Draw the circuit diagram and calculate:
i. The current in the circuit
ii. Voltages V_{R}, V_{L}, and V_{C}
iii. The phase angle and draw the phasor diagram
(b) Distinguish between average value and instantaneous value
(c) Explain the following terms and give their expressions.
i. RMS value
ii. Form factor

QUESTION TWO

(a) With the aid of diagrams explain the functions of the following in analogue instruments
i. Air current damping device
ii. Control device
(b) A coil of conductor is rotating within a magnetic field. Draw the sine wave and the generated emf is given by $\mathrm{e}=2 \pi B A n N \sin \theta$
(c) (i) Explain the importance of power factor improvement in ac circuits.
(ii) Draw the phasor diagrams for each of the following circuits:
I. Ac circuit having resistance only
II. Ac circuit having inductance only
III. Ac circuit having capacitance only

QUESTION THREE

(a) A resistance of 15Ω, an inductance of 0.18 H and a capacitance of $60 \mu \mathrm{~F}$ are connected in parallel across a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate:
i. The current on each branch
ii. The supply current
iii. The phase angle and draw the phasor diagram
(b)Explain the following terms:
i. Admittance
ii. Reluctance
iii. Susceptance
(c) A resistance of 20Ω, an inductance of 0.12 H and capacitance of $50 \mu \mathrm{~F}$ are connected in series.

Calculate the impedance using:
i. Rectangular notation
ii. Polar notation

QUESTION FOUR

(a) For the circuit of figure Q4a, calculate
i. Current in each line
ii. The current in the neutral conductor

(b) Draw the waveforms for three phase emfs and state expressions for line and phase currents in:
i. Star- connected supply
ii. Delta connected supply
(8 marks)
QUESTION FIVE
(a) (i) State the expression for power in a three phase system
(ii) A three phase delta connected motor operating off a 415 V system is developing 25 kW at an efficiency of 0.95 p.u. and a power factor of 0.9. Calculate:
I. The line current
II. The phase current
(b) With the aid of a diagram explain the operation of a permanent magnet moving coil instrument. (7 marks)
(c) With the aid of a diagram explain the two-meter method of power measurement in three phase systems.

