

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

Department of Electrical and Electronic engineering

Higher Diploma in Electrical Power Engineering EEE3214: ELECTRICAL POWER SYSTEMS III

END OF SEMESTER EXAMINATION **TIME: 2** HOURS

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID
This paper consists of five Questions;. Attempt any THREE Questions.

Do not write on the question paper.

Question One

- (a) (i) Define corona
 - (ii) State TWO advantages and TWO disadvantages of corona
 - (iii) State two methods of reducing corona effect

(8 marks)

- (b) Explain the following terms with reference to corona:
 - (i) Critical disruptive voltage
 - (ii) Visual critical voltage
 - (iii) Power loss due to corona

(6 marks)

(b) A 3-phase overhead transmission line, consists of three stranded copper conductors spaced 2.5 m apart at the corners of an equilateral triangle. The air temperature and pressure are 21°C and 73.6 cm Hg respectively. The conductor diameter and irregularity factor are 10.4 mm and 0.85,

Determine the disruptive critical voltage

(6 marks)

Question TWO

- (a) Define the following protection terms,
 - (i) Pickup level
 - (ii) Primary relays
 - (iii) Secondary relays
 - (iv) Unit protection
 - (v) Non unit protection

(5 marks)

- (b) Explain THREE methods of achieving time delay in inverse time relays (6 marks)
- (c) A 30 MVA,33/11 kV three phase delta star transformer is protected by a differential relay. The CT current ratio on the primary is 500:5 and that on the secondary is 2000:5 Determine the relay current setting for faults drawing up to 200 percent of the rated current.

 (9 marks)

Question THREE

- (a) Explain the following;
 - (i) Voltage regulation
 - (ii) Transmission efficiency

(4 marks)

- (b) Distinguish between the three classes of transmission line and how line parameters affect each class. (3 marks)
- (c) A 200 km long 60hz transmission line supplies a 100 MW star connected load at 215KV (line to line)0.9 pf lag. The per phase parameters of the line are Resistance 2.07 Ω , inductance 310.8mH and capacitance 1.4774 μ F. Determine:
 - (i) The ABCD constants for the line
 - (ii) The sending end voltage

(13marks)

Question FOUR

- (a) (i) State Four methods of grounding
 - (ii) State Two advantages and Two disadvantages of each

(8 marks)

- (b) Explain the phenomenon of arcing grounds and the methods used to minimize this phenomenon (3 marks)
- (c) A 132 kV, 3-phase, 50 Hz transmission line 192 km long consists of three conductors of effective diameter 20 mm, arranged in a vertical plane with 4 m spacing and regularly transposed. Find the inductance and kVA rating of the arc suppressor coil in the system.

 (9 marks)

Question FIVE

- (a) Explain how an arc is initiated and sustained in a circuit breaker when the circuit breaker contacts separate.
- (b) Explain the electronegativity of SF6 gas and state its four characteristic (6 marks)
- (c) Explain the terms;
 - (i) Symmetrical breaking current
 - (ii) Asymmetrical breaking current
 - (iii) making current
 - (iv) Current chopping

(8 marks)

Page 3 | 4

- (d) A circuit breaker is rated as 2500 A, 1500 MVA, 33 kV, 3 secs, 3-phase oil C.B. Determine;
 - (i) Normal rated current
 - (ii) Breaking current
 - (iii) Short time rating

(3 marks)