

# **TECHNICAL UNIVERSITY OF MOMBASA**

# FACULTY OF ENGINEERING AND TECHNOLOGY

# DEPARTMENT OF BUILDING & CIVIL ENGINEERING

# **UNIVERSITY EXAMINATION FOR:**

# BSC IN CIVIL ENGINEERING

# ECE 2408 : THEORY OF STRUCTURES V

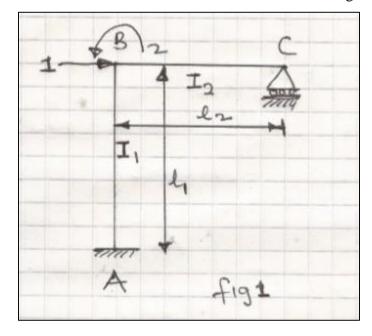
# END OF SEMESTER EXAMINATION

# SERIES: APRIL 2016

# TIME: 2 HOURS

### DATE: 11 May 2016

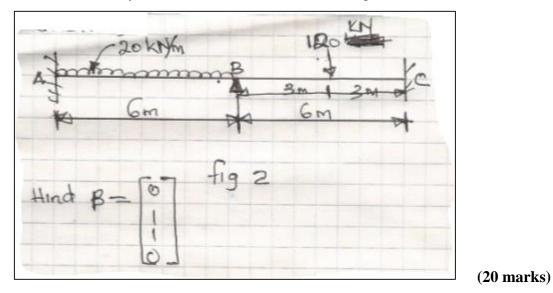
#### **Instructions to Candidates**


You should have the following for this examination -Answer Booklet, examination pass and student ID -Drawing instruments. This paper consists of five questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.** 

#### **QUESTION ONE (COMPULSORY)**

| a) (i) | Define finite element                      |           |
|--------|--------------------------------------------|-----------|
| (ii)   | State THREE applications of finite element | (2 marks) |

## b) Explain the terms compactibility as applied in structural analysis. (2 marks)

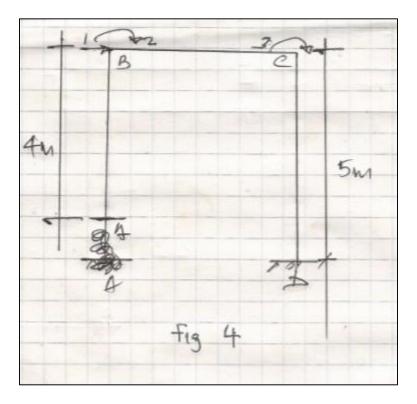

c) Using spring analogy, construct a three by three (3X3) stiffness matrix complete with an external force vectors. (15 marks)



d) Generate the stiffness matrix for the structure with co-ordinates as shown in fig. 1. (11 marks)

#### **QUESTION TWO**

a) Using stiffness method, analyze the continuous beam shown in fig. 2. (om++it the BMD sketch).




#### **QUESTION THREE**

- $\frac{1}{1} = Constrant}$   $\frac{1}{1} = Constrant}$
- a) Generate a stiffness matrix for the structure with coordinates as shown in fig.3. (20 marks)

#### **QUESTION FOUR**

a) Generate the ( $\beta$ ) matrix for the portal frame shown in fig. 4. below. (20 marks)

