

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT BUILDING AND CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR:

BSC IN CIVIL ENGINEERING

ECE 2306: SURVEY III

END OF SEMESTER EXAMINATION

SERIES: APRIL2016

TIME:2HOURS

DATE:17May2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, Drawing Instruments, Scientific calculator, examination pass and student ID This paper consists of five questions. Attemptquestion ONE (Compulsory) and any other TWO questions.

QUESTION ONE [30 Marks]

a) Describe the components of a planimeter.

[4 marks]

b) Describe a procedure for measuring area from a plan by a planimeter with the pole outside the figure.

[5 marks]

c) The plan area of a piece of land is 2420 square millimetres as measured by a fixed-arm planimeter. If the scale of the plan is 1/1250, calculate the actual area of the land in hectare.

[2 marks]

d) The following offsets were taken from a chain line to hedge:

Distance[m]	0	10	30	60	80	120	160	220	280
Offset [m]	9.4	10.8	13.6	11.2	9.6	8.4	7.5	6.3	4.6

Compute the area included between the chain lines, the hedge and the offset by:

- i. Mid ordinate rule.
- ii. Average ordinate rule.
- iii. Simpson's rule.
- iv. Trapezoidal.

[19 marks]

QUESTION TWO [20 Marks]

a) State and derive Simpson's Rule for determination of areas.

[5marks]

b) Derive a formula for determining area of a field by average ordinate rule.

[4 marks]

c) Derive a formula for determining area of a field by simple triangles.

[3 marks]

d) The following perpendicular offsets are measured from a straight line to an irregular boundary at regular intervals of 15 metres.

Offset	Distance	Offset	Distance	Offset	Distance	
	(m)		(m)		(m)	
H ₁	8.25	H ₆	13.60	H ₁₁	20.05	
H ₂	13.85	H ₇	15.25	H ₁₂	15.90	
H ₃	12.25	H ₈	16.85	H ₁₃	12.25	
H ₄	10.85	H9	14.95	H ₁₄	12.00	
H₅	12.25	H ₁₀	17.35			

Compute the area lying between the straight line and the irregular boundary by:

- i. Trapezoidal rule.
- ii. Simpson's one third rule.

[8 marks]

QUESTION THREE [20 Marks]

a) Derive an expression for trapezoidal formula for volume.

b) The areas within the contour line at the site of a reservoir and the face of the proposed dam are as follows:

Area	Contour	Area	
[m2]	[m]	[m2]	
1,000	106	1350,000	
12,800	107	1985,000	
95,200	108	2286,000	
147,600	109	2512,000	
872,500			
	Area [m2] 1,000 12,800 95,200 147,600 872,500	AreaContour[m2][m]1,00010612,80010795,200108147,600109872,500108	

Take 101 as the bottom level of the reservoir and 109 as the top level. Calculate capacity of the reservoir by:

- i. Trapezoidal rule.
- ii. Prismoidal formula.

[8 marks]

c) Describe the determination of volumes from spot levels.

[3 marks]

d) The figure below shows a rectangular plot which is to be excavated to the given depths. Assuming the sides to be vertical, calculate the volume of earth to be excavated.

Station	А	В	C	D	E	F	G	Н	J
Depth of	4.15	4.70	5.33	4.94	5.80	5.97	6.17	7.10	4.67
exc. [m]									

[5 marks]

[8 marks]

d) What is meant by rate of change of grade on vertical curves and why it is important?

[4 marks]