TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF BUILDING AND CIVIL ENGINEERING UNIVERSITY EXAMINATION FOR: BSC IN CIVIL ENGINEERING
 ECE 2212: FLUID MECHANICS II
 END OF SEMESTER EXAMINATION
 SERIES:APRIL2016
 TIME:2HOURS

DATE:10May2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, Drawing Instruments, Scientific calculator, examination pass and student ID This paper consists of five questions. Attemptquestion ONE (Compulsory) and any other TWO questions.

Question One (Compulsory)

a) Explain in detail 3 classification of mouthpieces.
b) Water is to be supplied to the inhabitants of Technical University of Mombasa through a supply main. The following data is given.
Distance of the reservoir from the campus $\quad=3000 \mathrm{~m}$
Number of inhabitants $=4000$
Consumption of water per day for each inhabitant $=180$ litres
Loss of head due to friction $=18 \mathrm{~m}$
Coefficient of friction for the pipe, $f=0.007$
If half of the daily supply is pumped in 8 hrs determine the size of the supply main. ($\mathbf{1 0}$ marks)
c) A tank has two identical orifices in one of its vertical sides, the upper orifice is 1.5 m below the water surface and the lower one is 3 m blow the water surface as shown in the figure 1(c). Find the point at which the two jets will intersect, if the coefficient of velocity is 0.92 for both the orifices.
(6 marks)

d) A circular tank of diameter 3 m contains water upto a height of 4 m . The tank is provided with an orifice of diameter 0.4 m at the bottom. Find the time taken:
i) by water to fall from 4 m to 2 m .
ii) to completely empty the tank. Take $\mathrm{C}_{\mathrm{d}}=0.6$
(7marks)
e) A $200 \mathrm{~mm} \times 100 \mathrm{~mm}$ venturimeter is provided in a vertical pipe carrying water, flowing in the upward direction. A differential mercury manometer connected to the inlet and throat gives a reading of 220 mm . Find the rate of flow. Assume $\mathrm{C}_{\mathrm{d}}=0.98$
(4 marks)

Question Two

a) Derive the Darcy-Weisbach equation for loss of head due to friction in pipes.
(10marks)
b) A horizontal venturimeter with inlet and throat 300 mm diameter and 100 mm respectively is used to measure the flow of water. The pressure intensity at the inlet is $130 \mathrm{kN} / \mathrm{m}^{2}$ while the vacuum pressure head at the throat is 350 mm of mercury. Assuming that 3% of head is lost in between the inlet and throat: calculate the coefficient of discharge for the venturimeter and find the rate of flow.
(10 marks)

Question Three

a) Two reservoirs are connected by a pipeline consisting of two pipes, one of them 15 cm diameter and length 6 m and the other of diameter 22.5 cm and length 16 cm . If the difference of water levels in the two reservoirs is 6 m , calculate the discharge. Take $\mathrm{f}=0.04$
(10marks)
b) A piping system consists of three pipes arranged in series; the length of the pipes are $1200 \mathrm{~m}, 750 \mathrm{~m}$ and 600 m and diameters $750 \mathrm{~mm}, 600 \mathrm{~mm}$ and 450 mm respectively.
i) Transform the system to an equivalent 450 mm diameter pipe.
ii) Determine an equivalent diameter for the pipe 2550 m long.
(10marks)

Question Four

a) Explain briefly how the coefficient of discharge of a jet issuing through an orifice can be experimentally determined.
b) A large tank has sharp edged circular orifice of $930 \mathrm{~mm}^{2}$ area at a depth of 3 m below constant water level. The jet issues horizontally and in a horizontal distance of 2.4 m , it falls by 0.53 m , the measured discharge is 4.3 litres $/ \mathrm{sec}$. Determine the coefficient of velocity, contraction and discharge for the orifice.
(6 marks)
c) A tank 1.8 m high, standing on the ground, is kept full of water. There is an orifice in its vertical side at a depth h metres below the surface. Find the value of h in order that the jet may strike the ground at a maximum distance from the tank.
(8 marks)

Question Five

a) Derive the Hagen- Poiseuille Law.
b) A liquid with specific gravity 2.8 and viscosity $0.08 \mathrm{Ns} / \mathrm{m}^{2}$ flows through a smooth pipe of unknown diameter, resulting in a pressure drop of $800 \mathrm{~N} / \mathrm{m}^{2}$ in 2 km length of the pipe. What is the pipe diameter if the mass flow rate is $2500 \mathrm{~kg} / \mathrm{hr}$ (8 marks).

