

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING (DME 224)

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

EHL 2303: OPTO-ELECTRONICS

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME: 2HOURS

DATE: Pick Date Select Month Pick Year

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FOUR** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE (Compulsory)

(a)	(i)	Define Quanta.	(1 mark)	
	(ii)	State the parameters of the equation which proposed that the energy of a quantum of radiation is directly related to the frequency of the radiation. (3 marks)		
(b)	(i)	With the aid of the EM spectrum diagram explain by optical devices.	in the optical range in use (9 marks)	
	(ii)	Explain the THREE types of optical transducers Electro-optical transducers.	s in the classification of (6 marks)	

	(iii)	With the aid of a basic structure diagram, but	riefly describe the LED as a	
		PN Junction.	(5 marks)	
(c)	Distingu	ish between an LED and a Laser diode.	(6 marks)	

Question TWO

(a)	(i)	Describe the photodiode as essentially a PN junction diode. (6 mark		
	(ii)	With the use of relevant diagrams, briefly explain the opposite photodiode as a photo detector in the $(3^{rd}$ quadrant).	pperation of the (6 marks)	
(b)	(i)	With the aid of an output characteristic curve diagram. phototransistor as an optical device.	Describe the (6 marks)	
	(ii)	State any TWO applications of a photo transistor.	(2 marks)	

Question THREE

(a)	(i)	Describe the principles of operation of the Opto-cou practical arrangement diagram.	pler using the (6 marks)		
	(ii)	State TWO applications of the Opto-coupler.	(2 marks)		
(b)	Explain the following terms as used in Lasers:				
	(i) (ii) (iii)	Population Inversion Spontaneous emission Stimulated emission			
			(6 marks)		
(c)	State any THREE types of gas Lassers. (3 mark				
(d)	Explain the following terms as applied to Lasers:				
	(i)	Monochromatism			
	(ii)	Coherence			
	(iii)	Collimation			
			(3 marks)		

Question FOUR

(a)	(i)	Define mode locking technique as applied in lasers.	
	(ii)	State the formular for the total electric field as a funct define the constants.	tion of time and
			(4 marks)
(b)	(i)	Define Q-Switching.	
	(ii)	With the aid of graph representation explain the time the laser parameters during Q-Switching.	variation of some of
			(9 marks)
(c)	(i)	Explain the TWO importants requirements for effecti	ive Q-Switching. (4 marks)
	(ii)	State the THREE methods of Q-Switching.	(3 marks)

Question FIVE

(a)	(i)	Name the FOUR classes of Lasers.	
	(ii)	With the aid of a diagram, describe the Atomic Laser-the He-Ne	Laser.
			(10 marks)
(b)	(i)	Describe Attainment of a population inversion.	
	(ii)	Calculate the ratio for a tungsten filament lamp operating at a ten 2000K. Taking the average frequency to be 5 x 10^{14} Hz. (Use $R = Exp(hv/kT) - 1$.	mperature of (6 marks)
(c)	(i)	The total laser losses of a system is due to a number of different the THREE most important processes.	processes. List (3 marks)
	(ii)	Define Holography.	(1 mark)