TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

EEE 2102 ELECTRICAL ENGINEERING SCIENCE
SERIES: MAY 2016

Instructions

- This paper consists of FIVE questions
- Answer any THREE questions
- All Questions carry equal marks

QUESTION ONE

(a) Define the following terms
i. electrochemical equivalent
ii. Joule
iii. Coulomb
iv. Ampere (8 marks)
(b) (i) Explain THREE main sources of emf
(ii) Explain the term Potential difference
(8 marks)
(c) State Kirchhoff's laws
(4 marks)

QUESTION TWO

(a) For the circuit of figure Q2a use Kirchhoff's laws to determine:
i. Total resistance
ii. Circuit current
iii. Power
iv. Energy if the current flows for 2 minutes
v. Current in branch $A B$
vi. Pd across CD

FIGURE Q2a

(b) (i) Distinguish between resistivity and temperature coefficient of resistance
(ii) A coil is wound from 28 m length of copper wire having a cross-sectional area of $2.5 \mathrm{~mm}^{2}$.

Calculate:
I. The resistance of the coil at $0^{\circ} \mathrm{C}$
II. The resistance of the coil at $85^{\circ} \mathrm{C}$ (8 marks)
(Temperature coefficient of copper $=4.28 \times 10^{-8}$ and its resistivity $=1.59 \times 10^{-8}$)

QUESTION THREE

(a) (i) State superposition theorem
(ii) Use superposition theorem to calculate the current in each branch in the network of figure Q3a (10 marks)
FIGURE Q3a

(b) With the aid of a diagram explain the construction of a lead acid cell
(c) State any FOUR characteristics of lines of magnetic flux.
(10 marks)

QUESTION FOUR

(a) (i) State the following:
i. Lenz's law
ii. Fleming's right hand rule
iii. Magnetic field strength
(ii) A coil of 250 turns is wound uniformly over a wooden ring having a mean circumference of 650 mm and a cross-sectional area of $3.5 \mathrm{~mm}^{2}$ Calculate the flux density.
(10 marks)
(b) (i) State Thevenin's theorem
(ii) For the circuit network of figure Q5a use Thevenin's theorem to determine the current the 20Ω
(10 marks)
FIGURE Q5a

(a An alternating voltage is given by 55sinwt. Draw the sine wave and determine:
i. Peak value
ii. Average value
iii. RMS value
iv. Form factor (7 marks)
(b) Two instantaneous voltages $\mathrm{V}_{1}=50 \sin \Theta$ volts and $\mathrm{V}_{2}=36 \sin \left(\theta-\frac{\pi}{6}\right)$ volts act in the same circuit. Draw phasor diagrams and derive the expression for:
i. The sum and
ii. The difference of voltages.
(c) (i) Define the following terms
I. Capacitance
II. Farad
(ii) Two capacitors having capacitances $8 \mu \mathrm{~F}$ and $15 \mu \mathrm{~F}$ are connected in parallel across a 200 V supply. Calculate
I. The total capacitance
II. The charge

