TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

EEE 2102 ELECTRICAL ENGINEERING SCIENCE

SERIES: MAY 2016

Instructions

- This paper consists of FIVE questions
- Answer any THREE questions
- All Questions carry equal marks

QUESTION ONE

FIGURE Q2a

(a)	Define the following terms		
	i.	electrochemical equivalent	
	ii.	Joule	
	iii.	Coulomb	
	iv.	Ampere	(8 marks)
(b) (i)	Explain T	HREE main sources of emf	
(ii) Explain the term Potential difference			
(c)	State Kir	chhoff's laws	(4 marks)
QUES		0	
(a)	For the ci	rcuit of figure Q2a use Kirchhoff's laws to determine:	
	i.	Total resistance	
	ii.	Circuit current	
	iii.	Power	
	iv.	Energy if the current flows for 2 minutes	
	v.	Current in branch AB	
	vi.	Pd across CD	(12 marks)

- (b) (i) Distinguish between resistivity and temperature coefficient of resistance
 - (ii) A coil is wound from 28m length of copper wire having a cross-sectional area of 2.5mm². Calculate:
 - I. The resistance of the coil at $0^{\circ}C$
 - II.The resistance of the coil at 85° C(8 marks)(Temperature coefficient of copper = 4.28×10^{-8} and its resistivity = 1.59×10^{-8})

QUESTION THREE

- (a) (i) State superposition theorem
 - (ii) Use superposition theorem to calculate the current in each branch in the network of figure Q3a

(10 marks)

FIGURE Q3a

(b) With the aid of a diagram explain the construction of a lead acid cell (6 marks)

(c) State any FOUR characteristics of lines of magnetic flux. (4 marks)(10 marks)

QUESTION FOUR

- (a) (i) State the following:
 - i. Lenz's law
 - ii. Fleming's right hand rule
 - iii. Magnetic field strength
 - (ii) A coil of 250 turns is wound uniformly over a wooden ring having a mean circumference of 650mm and a cross-sectional area of 3.5mm² Calculate the flux density.

(10 marks)

- (b) (i) State Thevenin's theorem
 - (ii) For the circuit network of figure Q5a use Thevenin's theorem to determine the current the 20Ω

(10 marks)

25Ω		10Ω
QUESTION FIVE		

(a An alternating voltage is given by $55 \sin \omega t$. Draw the sine wave and determine:

- i. Peak value
- ii. Average value
- iii. RMS value
- iv. Form factor (7 marks)

(b) Two instantaneous voltages $V_1 = 50\sin\Theta$ volts and $V_2 = 36\sin(\Theta - \frac{\pi}{6})$ volts act in the same circuit. Draw phasor diagrams and derive the expression for:

- i. The sum and
- ii. The difference of voltages. (9 marks)

(c) (i) Define the following terms

- I. Capacitance
- II. Farad
- (ii) Two capacitors having capacitances 8µF and 15µF are connected in parallel across a 200V supply. Calculate
 - I. The total capacitance
 - II. The charge

(4 marks)