TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION FOR: DIPLOMA IN MECHANICAL ENGINEERING YEAR I SEMESTER II
EME 2106 : MECHANICAL SCIENCE II END OF SEMESTER EXAMINATION
SERIES: APRIL 2016
TIME: 2 HOURS
DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt any THREE questions.
Do not write on the question paper.

Question ONE

a. State FOUR laws of friction.
b. Using first principles, show that for a body moving down the plane, pull P parallel to the plane is given by:$\mathrm{F}=\mu R_{N}$ for limiting friction and hence $\mathrm{P}+\mathrm{F}=\mathrm{W} \sin \theta$ when resolved parallel to the plane. (6 marks)
c. A force of 540 N acting parallel to a plane inclined at 20° to the horizontal is required to just move a body of mass 61.3 kg up the plane. Calculate:-
(10 marks)
i. The coefficient of friction between the surfaces.
ii. The force parallel to the plane required to drag the body down the plane at a steady speed.
iii. If the surface is lubricated is lubricated, calculate the value of μ to make the body move down under its own W.

Question TWO

a. Define the following terms with reference to applied mechanics:-
i. Work done
ii. Tractive resistance
iii. Power
iv. Energy
b. Show that the energy lost due to kinetic energy is given by:-

$$
\mathrm{E}_{\mathrm{k}}=\frac{1}{2} m v^{2}
$$

c. The diagram shows two masses 2 kg each connected by alight inelastic cord passing over a light frictionless pulley. If additional mass of 20 g is placed on one of the hanging masses, the masses move from rest at constant acceleration. Calculate the distance through which mass will have moved after 6 seconds.

Question THREE

a. Define the following terms with reference to simple machines;-
i. Mechanical Advantage
ii. Velocity Ratio
iii. Efficiency
b. State and explain the condition for reversibility of a machine.
c. Show using a well labelled diagram, a simple pulley block with a velocity ratio of 5 .
(3 marks)
d. The following corresponding values of the load L and effort F were obtained during an experiment with a certain Weston pulley block having a velocity ratio of 24 .

Load, L in kg	5	10	15	20	25
Effort, F in N	10	14	18.5	22.5	27.5

Draw Effort x Load graph and the \% efficiency x Load graph on the same side of the graph paper to the same scale and on it determine:-
i. The Law of the machine
ii. Efficiency of the machine when a load of 23 kg is being lifted.
iii. The load that can be lifted with an efficiency of 35%.

Question FOUR

a. Define the following terms as used in dynamics:-
i. Momentum
ii. Impulsive forces
b. State THREE Newton's Laws of motion.
c. The diagram below shows a mass $m_{1} \mathrm{~kg}$ connected by a mass $\mathrm{m}_{2} \mathrm{~kg}$ by means of a light inelastic cord. When the system is released from rest, m_{2} accelerates downwards. Calculate the acceleration of the system if the coefficient of friction is μ.

Question FIVE

a. Define the following terms as used in strength of materials.
i. Strain
ii. Stress
iii. Intensity of direct stress
b. State Hooke's law.
c. A specimen of low carbon steel (En 3B) was subjected to a tensile test to destruction and the following results and details were obtained.

Maximum Load $\quad=34.04 \mathrm{kN}$
Yield Load $\quad=31.39 \mathrm{kN}$
Limit of proportionality load $=22.08 \mathrm{kN}$
Gauge Length $\quad=50 \mathrm{~mm}$
Final distance between gauge lengths $=58 \mathrm{~mm}$
Original cross sectional area $=64 \mathrm{~mm}^{2}$
Diameter at fracture $=6 \mathrm{~mm}$
Calculate:-
i. The tensile strength
ii. The yield stress
iii. The limit of proportionality stress and
iv. The percentage elongation and reduction area
d. A copper wire 1.6 mm diameter, 4 m long extends 1.7 mm when carrying a mass of 98 N . Calculate:i. The stress and strain in the wire at this load
ii. The modulus of elasticity of copper
iii. The factor of safety if the ultimate tensile strength of copper is $220 \mathrm{~N} / \mathrm{mm}^{2}$
(7 marks)

