TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS \& PHYSICS UNIVERSITY EXAMINATION FOR: B.SC CIVIL ENGINEERING\&ELECTRICAL ENGINEERING
SMA2471: NUMERICAL ANALYSIS 1 END OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS
DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of five questions. Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

QUESTION ONE

a) If E, Δ and ∇ be shift, forward and backward difference operators, prove that

$$
\Delta \equiv \Delta E^{-1}
$$

b) Determine the value of y when $x=0.1$ using Euler's modified method given that $y(0)=1$

$$
\text { if } \frac{d y}{d x}=y+x^{2} \text { and } \mathrm{h}=0.05
$$

c) Determine the volume of revolution of a solid generated revolution, where the radius $\mathrm{r}(\mathrm{x})$, the perpendicular distance from the x -axis is given in the table below using Simpson's rule with $\mathrm{n}=3$ and $\mathrm{h}=1$.

x	0	1	2	3	4	5	6
$\mathrm{r}(\mathrm{x})$	6.2	5.8	4.0	4.6	5.0	7.6	8.2

d) By considering the base year 1970 as the initial time $=0$,estimate the rental income in 1973,

Year	1970	1972	1974
Rental Income	100	180	210

e) Given $y^{\prime}=x^{2}-y, y(0)=1$, find $y(0.1), y(0.2)$ using Runge-Kutta method of second order.
f) Evaluate by Taylor's method the approximate value at $x=0.2$ for the differential equation, $\frac{d y}{d x}=2 x-y^{2} y(0)=0$. Use $h=0.2$
g) Find the root of $f(x)=\cos x-x e^{x}$ using Newton's Raphson's iterative method if $\mathrm{x}_{0}=1$ correct to 3dp up to the third step.
(5 mks)

QUESTION TWO

(a) Use a finite difference table to detect the error in the given data hence correct the value;

x	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6.0
$\mathrm{f}(\mathrm{x})$	125.000	132.651	140.608	148.877	157.446	166.375	175.616	185.193	195.112	205.379	216.006

(b) Using the Lagrange's interpolating formula, find the values of y when $\mathrm{x}=10$ from the following table;

x	5	6	9	11
y	12	13	14	16

(c) Find the truncation error bound when estimating

$$
\int_{1.0}^{1.2} \sqrt{x} d x \text { using Simpson's one third rule. }
$$

QUESTION THREE

a) Evaluate $\int_{1}^{3} \frac{x^{2}}{1+x^{2}} d x$ where $h=0.5$ by Newton's cotes formula (8 mks)
b) Use the modified Euler's method to obtain $y(0.6)$ correct to 4 d.p. given that $y^{\prime}=y-x^{2}$ $y(0)=1$ take $h=0.2$
(10 mks)
c) Differentiate between interpolation and extrapolation.
(2 mks)

QUESTION FOUR

a) Use Runge - Kutta method to find $y(0.1)$, if $y^{\prime}=\frac{y-x}{y+x}, y(0)=1$ take $h=0.1$, and correct to 4 d.p.
b) Use Milne's predictor-corrector method to obtain the solution of the equation,

$$
\begin{align*}
& y^{\prime}=\frac{1}{2}\left(1+x^{2}\right) y^{2} \text { at } x=0.4 \text { given that } y(0)=1, y(0.1)=1.6 \quad y(0.2)=1.12 \\
& y(0.3)=1.21 \tag{8mks}
\end{align*}
$$

QUESTION FIVE

(a) The speed, v meters per second, of a car, t seconds after it starts, is shown in the following table

t	0	12	24	36	48	60	72	84	96	108	120
v	0	3.60	10.08	18.90	21.60	18.54	10.26	5.40	4.50	5.40	9.00

Using Simpson's $\frac{1}{3}$ rule, find the distance travelled by the car in 2 minutes. (3 mks)
(b) Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$, using Romberg's method, correct to 4 decimal places. Hence find an approximate value of π.
(6 mks)
(c) Using Taylor's series of $y(x)$, find $y(0.1)$ correct to 4 decimal places if $y(x)$ satisfies $y^{\prime}=x-y^{2}$ and $y(0)=1$.
(d) Using Adam's Bashforth method, find $\mathrm{y}(1.4)$ given $y^{\prime}=x^{2}(1+y), \mathrm{y}(1)=1, \mathrm{y}(1.1)=1.233$, $\mathrm{y}(1.2)=1.548$, and $\mathrm{y}(1.3)=1.979$.

