THE TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

DEE2

EME 2130 MECHNANICAL SCIENCE

SERIES: APRIL/ MAY 2016

TIME: 2 HOURS

Instructions to candidates

You should have the following for this examination:-

- Answer booklet
- Scientific calculator
- Drawings instruments

The paper consists of FIVE Questions. Answer any THREE questions

Question One

- (a) Define the following terms:-
 - (i) Work
 - (ii) Energy
 - (iii) Power
 - (iv) Kinetic energy

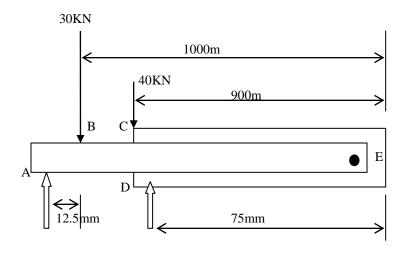
(4 marks)

(b) State the principle of conservation of energy

(2 marks)

- (c) A body having a mass of 80N rests on a horizontal surface. Assuming the coefficient of friction is 0.25, calculate the force applied to the body at an upward angle of 30° with the horizontal, to just:-
 - (i) Pull the body over the surface
 - (ii) Push the body over the surface,

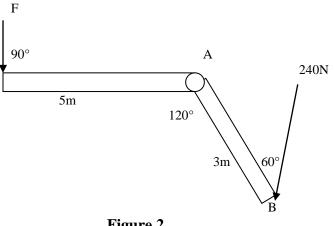
with constant velocity in each case


(14 marks)

Question Two

- (a) Define the following terms:-
 - (i) Moment
 - (ii) Couple
 - (iii) Torque

(3 marks)


(b) The compound lever shown below is made up of two levers AE and CE, pinned at a common point E. AE carries a 30KN load at B and rests on a knife edge at A. CE carries a 40KN load at C and rests at a knife edge at D. Calculate the vertical force required at the pin E to hold the two levers horizontal.

(8 marks)

(c) Calculate the magnitude and direction of the reaction at the pivot point A of the lever shown in the diagram. The lever is in equilibrium.

(9 marks)

Question Three

- Define the following terms:-(a)
 - (i) Stress
 - (ii) Strain
 - (iii) Modulus of elasticity

(3 marks)

(b) The following results were obtained for a gauge length of 60mm in a tensile test on a specimen of black mild steel of 12mm diameter.

Load, W (KN)	5	10	15	20	25	30	35	40
Extension x10 ⁻³ mm	14	27.2	41	54	67.6	81.2	96	112

When tested to destruction:-

Maximum load = 65KN Load at fracture = 50KN Diameter at fracture = 7.5mm Total extension gauge length = 17mm

Calculate:-

- (i) Young's Modulus
- (ii) Specific modulus
- (iii) Ultimate tensile stress
- (iv) Breaking stress
- (v) Stress at fracture
- (vi) Percentage elongation

Hint: Relative density of steel = 7.8

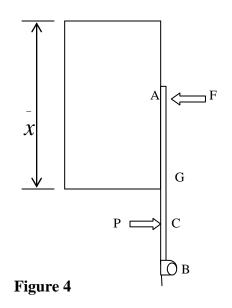
(13 marks)

(c) Discuss your results in 3(b) above in relation to:-

- (i) Failure, a factor of safety
- (ii) Ductility
- (iii) Resilience and toughness
- (iv) Brittle materials

(4 marks)

Question Four


- (a) Define the following terms:-
 - (i) Pressure
 - (ii) Density
 - (iii) Specific gravity

- (iv) Specific weight
- (v) Centre of pressure

(5 marks)

- (b) A fuel tank contains oil of specific gravity 0.7. In one vertical side is cut a circular opening 1.8m diameter closed by a trap door hinged at the lower end B and held by a bolt at the upper edge A. If the fuel level is 1.8m above the top edge of the opening, calculate:-
 - (i) The total force on the door,
 - (ii) The force F in the bolt
 - (iii) The force on the hinge.

Density of water = $1 Mg/m^3$

(15 marks)

Question Five

- (a) During three consecutive seconds it is observed that a particle moves with constant acceleration through distances of 240m, 486m and 5m. Calculate:-
 - (i) The acceleration and velocity at the beginning and end of the period of the observation
 - (ii) The distance traversed during the third second of observation and the total distance covered in six seconds.

(10 marks)

- (b) A pulley A, diameter 800mm is accelerated by means of a belt drive from 60r/min to 240r/min during which it turns through 360 revolutions. This pulley is attached by means of a belt to a driven pulley B, with a diameter 200mm. Calculate:-
 - (i) The angular acceleration of the belt if there is no slip
 - (ii) The initial and final velocity of pulley B in r/min and rad/s respectively.

(10 marks)