

TECHNICAL UNIVERSITY OF MOMBASA
A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS

APRIL 2016 SERIES EXAMINATION
UNIT CODE: SMA 2273 UNIT TITLE: APPLIED
MATHEMATICS 1
SPECIAL/SUPLIMENTARY EXAMINATION
TIME ALLOWED: 2HOURS
INSTRUCTIONTO CANDIDATES:
You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a. For a body in vertical motion, show that maximum height of a projectile is $h_{m}=\frac{U_{0}^{2} \sin ^{2} \theta}{g}$
(3 marks)
b. State Newton's second law of motion and use it to derive the formula $f=m a$
c. State four uses of dimensional analysis
(4 marks)
d. 2 Forces P and Q which are inclined at 120° have a resultant magnitude of P. calculate the magnitude of Q in terms of $P \sqrt{7}$
e. A stone of mass 0.4 kg is tied to a string of length 0.5 and whirled in a circle. If the stone revolve uniformly and makes one complete revolution per second, calculate its acceleration and the force exerted on the stone by the string
(2 marks)
f. Two particles have position vectors given by

$$
\begin{gathered}
r_{1}=4 t i-2 t^{2} j-5 t k \\
r_{2}=\left(2 t^{2}-t\right) i+t^{3} j-4 t k
\end{gathered}
$$

Find the relative velocity and acceleration of second particle with respect to the first particle when $t=3$ seconds
(6 marks)
g. Two particles of mass 5 kg and three kg are connected by a light inelastic string passing over a smooth fixed pulley. find the acceleration of particles and tension in the string when the system is moving freely
(3 marks)

h. A coil spring lies along the helix. $r=(\cos 4 t) i+(\sin 4 t) j+t k, 0 \leq t \leq 2 \pi$. The spring's density is a constant $\delta=1$. Find spring's mass and spring's moment of inertia and radius of gyration about the z axis

QUESTION TWO(20 MARKS)

a. A particle is moving along a curve defined by the parametric equation $x=2 \cos 3 t$ $y=2 \sin 3 t \quad z=4 t^{2}$. find
i. Velocity and acceleration at any time t.
(3 marks)
ii. Show that the speed of the particle is increasing but the magnitude of acceleration is constant.
(4 marks)
b. A particle p is projected from point o on a horizontal plane with a speed of $72 \mathrm{~km} / \mathrm{h}$ at an angle θ to the horizontal where $\tan \theta=\frac{4}{3}$. Find
i. Time taken for P to return to the plane
(2 marks)
ii. Maximum height attained by P
iii. The range
iv. Speed of P after two seconds.
c. A particle on a circle of radius R has a constant angular acceleration α. If the particle starts from rest, show that after a time t
i. The angular velocity $\omega=\alpha t$
(2 marks)
ii. The magnitude of acceleration a_{T} and a_{N}

QUESTION THREE (20 MARKS)

a. A block of mass 2 kg is kept moving with a uniform acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$ by an application of force of 10.4 N . What was the limiting frictional force? (3 marks)
b. A particle is fired with a constant velocity of $10 \times 10^{5} \mathrm{~m} / \mathrm{s}$ into the region where it is subjected to an acceleration of $2 x 10^{12} \mathrm{~m} / \mathrm{s}^{2}$ directed to the initial velocity. How far does the particle travel before coming to rest? How long does the particle remain at rest?
(3 marks)
c. A particle moves with position functionr $(t)=\left(t^{2}, t^{2}, t^{3}\right)$. Find
i. The unit tangent vector at $\mathrm{t}=1$
ii. The tangential and normal acceleration to the point.
d. A particle of mass m kg moves in the $\mathrm{x} y$ axis plane so that its position vector is where a , b and w are positive constants and $a>b$
i. Show that the force field is conservative (3 marks)
ii. Find the potential energy at the points A and B in the figure below

iii. Find the work done by the force in moving the particle from A to B
(1 marks)
iv. Find the total energy of the particle and show that it is constant, i.e. demonstrate the principle of conservation of energy.
(2 marks)

QUESTION FOUR (20 MARKS)

a. A particle is projected from a point which is $2 m$ above the ground level with a velocity of $40 \mathrm{~m} / \mathrm{s}$ at an angle 45 to the horizontal. Find its horizontal distance from the point of projection when it hits the ground.
b. A particle of mass 5 units moves along a space curve given by $r=\left(t^{2}+t\right) i+$ $(3 t-2) j+\left(2 t^{3}-4 t^{2}\right) k$. find
i. Velocity o a particle
ii. Acceleration of the particle
iii. Force acting on a particle
iv. Momentum of particle at $t=2$
c. A coin is thrown vertically upwards from the ground with a speed of $10 \mathrm{~m} / \mathrm{s}$.
i. How long does it take to reach the maximum point
(1 marks)
ii. What is the maximum height reached by the coin?
(2 marks)
d. Calculate the resultant of vectors $v_{1}-v_{2}+v_{3}$ given that
$V_{1}=22$ units at 140°
$V_{2}=40$ units at 190°
$V_{3}=15$ units at 290°
e. If $F=(x, y, z)=y^{2} j+\left(2 x y+e^{3 z}\right) j+3 y e^{3 z} k$ find a function f such that $\boldsymbol{\nabla} \boldsymbol{f}=\boldsymbol{F}$

QUESTION FIVE (20 MARKS)

a. The efficiency η of a fun depends on the density ρ the dynamic viscosity μ of the fluid, the angular velocity ω, diameter D of the rotor and the discharge Q . express in terms of dimensionless parameters
(7 marks)
b. Find the work done in moving a particle once around a circle c in the $\mathrm{x}-\mathrm{y}$ plane with centre origin and radius 3 units by a force given by $F=(2 x-y+z) i+(x+y-$ $\left.z^{2}\right) j+(3 x-2 y+4 z) k$ for $x=3 \cos \theta y=3 \sin \theta . \theta$ changing from zero to $360(2 \pi)$
c. For a conical pendulum.

Show that for unit radius of the circular path $\tan \theta=\frac{v^{2}}{g}$
(3 marks)
d. A particle of unit mass moving a straight line is acted upon by a force given by $-4 x N$, where x is the displacement of 1 kg particle. The particle is at rest when $\mathrm{x}=3$ meters. Find the velocity when $\mathrm{x}=1$

THIS IS THE LAST PRINTED PAGE

