TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MECHNICAL ENGINEERING

EME 2305 : FLUIDS MECHANICS II
END OF SEMESTER EXAMINATION
SERIES: APRIL 2016
TIME: 2 HOURS
DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of Choose No questions. Attempt Choose instruction.
Do not write on the question paper.

Question ONE

a) Define the following;
I. Kinematic similarity
II. Geometric similarity
III. Dynamic Similarity

6 marks
b) Explain clearly Buckigham's π-theorem method of dimensional Analysis. 3 marks
c) The thrust force, F generated by a propeller is found to depend on the following parameters: diameter \mathbf{D}, forward velocity \mathbf{u}, density $\boldsymbol{\rho}$, viscosity $\boldsymbol{\mu}$ and rotational speed \mathbf{N}.
Determine the dimensionless parameters to correlate the phenomenon.
11 marks

Question TWO

a) Show that $\Delta P=\frac{128 \mu L Q}{\pi D^{4}}$

Where; ΔP is the pressure drop μ is the dynamic viscosity, L is the length of the pipe, Q is the discharge D is the diameter

16 marks
b) Oil flows at the rate of $3 \mathrm{l} / \mathrm{s}$ through a pipe of 50 mm diameter. The pressure difference across a length of 15 m of the pipe is 6 kPa . Determine the viscosity of oil flowing through the pipe.

Question THREE

a) A plunger of 0.08 m diameter and length 0.13 m has four small holes of diameter $5 / 1600 \mathrm{~m}$ drilled through in the direction of its length. The plunger is a close fit inside a cylinder, containing oil, such that no oil is assumed to pass between the plunger and the cylinder. If the plunger is subjected to a vertical downward force of 45 N (including its own weight) and it is assumed that the upward flow through the four small holes is laminar.
I. Sketch the arrangement

5 marks
II. Determine the speed of the fall of the plunger.

The coefficient of velocity of the oil is 0.2
8 marks
b) The velocity distribution of a viscous liquid (dynamic viscosity $\mu=0.9 \mathrm{Ns} / \mathrm{m}^{2}$) flowing over a fixed plate is given by $u=0.68 y-y 2$
(u is velocity in m / s and y is the distance from the plate in m).
Calculate the shear stresses at the plate surface and at $\mathrm{y}=0.34 \mathrm{~m}$?
7 marks

Question FOUR

a) The diameter and width of a contrifugal pump impeller are 50 cm and 2.5 cm . The pump runs at 1200 rpm . The suction head is 6 m and the delivery head is 40 m . The frictional drop in suction is 2 m and in the delivery 8 m . The blade angle at out let is 30°. The manometric efficiency is 80% and the overall efficiency is 75%.
I. Determine the power required to drive the pump.
II. Calculate the pressures at the suction and delivery side of the pump.

10 marks
b) A centrifugal pump has been designed to run at 950 rpm delivering $0.4 \mathrm{~m}^{3} / \mathrm{s}$ against a head of 16 m . If the pump is to be coupled to a motor of rated speed 1450 rpm .
Calculate the
I. discharge,
II. head
III. power input.

Assume that the overall efficiency is 0.82 remains constant.
10 marks

Question FIVE

a) Sketch a reciprocating pump showing its main parts and describe its operation.

12 marks
b) In a single acting reciprocating pump with plunger diameter of 120 mm and stroke of 180 mm running at 60 rpm , an air vessel is fixed at the same level as the pump at a distance of 3 m . The diameter of the delivery pipe is 90 mm and the length is 25 m . Friction factor is 0.02
Determine the reduction in accelerating head and the friction head due to the fitting of air vessel
8 marks

