

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (DEEE2)

DIGITAL ELECTRONICS I

EEE 2102

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID
This paper consists of five Questions;. Attempt any THREE Questions.

Do not write on the question paper.

QUESTION ONE

a. Define the term radix.			(2 marks)	
b. Carr	ry out the f	following conversions.		
(i) (ii)	ADE2 ₁₆ t	l ₂ to octal. to binary.		
(iii) (iv) i.	50.025₁₀ to Octal.c. Perform the following binary arithmetic operations:		(10 marks)	
ii.	88 + 52 in BCD.		(2 marks)	
iii. iv.	DB + F5 1110100		(2 marks) (2 marks)	
	QUEST	ION TWO		
	(i)	Work out: $i. 32_{10}-47_{10} using \ 2\text{'s compliment.}$ $ii. 16_{10}-14_{10} using \ 1\text{'s compliment.}$	(8 marks)	
	(ii)	Distinguish between weighted and unweight an example of each.	ed code and give (4 marks)	
	(iii)	Use the ASCII table attached to decod sequence.	J	
a	(iv)	1010000 1000001 1000100 0111111 Encode the following characters using ASCII	(3 marks) table:	
	. <			
c.	. \$		(3 marks)	

(v) Convert the binary code 1111001100 to gray code. (2 marks)

QUESTION THREE

- a. Three sensors are used to monitor pressure **P**, temperature **T**, and voltage **V** of an industrial plant. An alarm **X** should sound for the following conditions:
 - ➤ If both temperature and voltage sensors are **OFF**.
 - ➤ If temperature sensor is **ON** and voltage sensor is **OFF**.
 - ➤ If pressure sensor is **OFF** and voltage sensor is **ON**.

Take ON = Logic 1

OFF = Logic 0

Required:

- i. Develop a truth table for the problem.
- ii. Obtain the Boolean expression relating **PTV** and **X**.
- iii. Minimize the expression using Karnaugh Map.
- iv. Implement the minimized expression using basic gates. (11 marks)
- b. State four applications of Logic gates.

(4 marks)

c. Two electrical signals represented by A = 101101 and B = 110101 are applied to a 2-input AND gate. Sketch the output signal and the binary number it represents.

(3 marks)

d. State Demorgans theorem.

(2 marks)

QUESTION FOUR

- (i) An office building has an elevator system consisting of three elevators

 A, B and C. A logic circuit is required that will provide an alarm any
 time TWO of the three elevators is in use.
 - i. Draw the truth table to satisfy the given conditions.
 - ii. Derive the expressions for the sum of products. (4 marks)
- (i) Give the following logic expression as a function of minterms and hence simplify using a K-map.

$$Z = A\overline{B} + \overline{A}CD + \overline{A}\overline{B}C + A\overline{B}C\overline{D}$$
 (4 marks)

- (ii) Draw the table of gray code against the decimal 0-9. (3 marks)
- (iii) Prove the following Boolean identities:
 - i. XZ + XYZ = XZ

ii.
$$X + \widehat{X}Y = X + Y$$

iii.
$$XYZ + \overline{XYZ} + \overline{XYZ} = X(Y + Z)$$
 (7 marks)

(iv) Simplify the following expressions using Boolean Algebra: (2 marks)

a)
$$A = (\overline{W + X}) + (\overline{Y + Z})$$

b)
$$B = (\overline{X + \overline{Y}}) + (\overline{XY})$$

QUESTION FIVE

- a. The correct functioning of a machine is monitored by three **LED** indicators named **A**, **B**, and **C**. the machine is working if one of the following conditions holds.
 - ALL LED are Red.
 - A is red and either B or C is green.
 - C is red and A is green.

- i. Draw the truth table and produce a Boolean expression to represent when the machine is working. (4 marks)
- ii. Implement the expression in (i) above using basic gates only.

(4 marks)

- b. Draw the table of **excess -3 code** against the **decimal 0-9.** (3 marks)
- (i) Design from first principles the full adder binary circuit using logic gates. (6 marks)
- (ii) What are asynchronous inputs of a flip flop? (1 mark)
- (iii) Give **two** examples of non-saturated logic families. (2 marks)