

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (DEEE2)

DIGITAL ELECTRONICS I

EEE 2102

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **five** Questions;. Attempt any THREE Questions. **Do not write on the question paper.**

QUESTION ONE

(i)	Defi	Define the following terms.			
	a. Radix				
	b. Co	(2 marks)			
(ii)	Carr				
	i.	1110111.11_2 to decimal.			
	ii.	$ACD2_{16}$ to decimal.			
	iii.	52.625_{10} to binary.			
	iv.	60.025_{10} to Octal.	(10 marks)		
(iii)	Perform the following binary arithmetic operations:				
	i.	11101 + 1110.	(2 marks)		
	ii.	88 + 52 in BCD	(2 marks)		
	iii.	11011 X 11010	(2 marks)		
	iv.	1110100 ÷101.	(2 marks)		

QUESTION TWO

a. Work out:

(i)	$23_{10}-76_{10}$ using 2's compliment.	
(ii)	$55_{10}-45_{10}$ using 1's compliment.	(8 marks)

- b. Distinguish between weighted and unweighted code and give an example of each. (4 marks)
- - (3 marks)
- d. Encode the following characters using ASCII table:

(ii) %

(i) @

(iii) # (3 marks)

e. Convert the gray code 1111001100 to binary. (2 marks)

QUESTION THREE

- a. The arithmetic combination of lock circuitry for four gates at **Technical University of Mombasa (TUM)** is to be installed. A warning in the control room will sound if the following conditions occurs:
 - ✓ Gate A, D are open.
 - ✓ Gate C is closed and A, B, D are open.
 - ✓ Gate **A**, **C** are open.
 - ✓ Gate C, D are closed while A, B are open.
 - ✓ Gate **C**, **D** are open while **A**, **B** are closed.
 - ✓ Gate **A**, **B** are closed but **C**, **D** are open.
 - ✓ Gate B is closed while A, C, D are open.
 Take closed = HIGH (1) and
 Open = LOW (0)
 - (i) Write down the truth table of the circuit.
 - (ii) Use K map to get a reduced function.
 - (iii) Implement the reduced function using NAND gates only. (11 marks)
- b. State four applications of Logic gates.

c. Two electrical signals represented by A = 101101 and B = 110101 are applied to a 2-input AND gate. Sketch the output signal and the binary number it represents.

(3 marks)

(4 marks)

d. State Demorgans theorem.

(2 marks)

QUESTION FOUR

(i) Determine the function F from the figure Q4.i

(ii) Give the following logic expression as a function of minterms and hence simplify using a K-map.

$$Z = A\overline{B} + \overline{A}CD + \overline{A}\overline{B}C + A\overline{B}C\overline{D}$$
 (5 marks)

- (iii) Draw the table of excess -3 code against the decimal 0-9. (3 marks)
- (iv) Prove the following Boolean identities: i. AC + ABC = AC

ii.
$$A + \widehat{A}B = A + B$$

.

a)
$$Y = (\overline{\overline{A + B}}) + (\overline{C + D})$$

b) $Y = (\overline{\overline{A + B}}) + (\overline{\overline{AB}})$

(2marks)

QUESTION FIVE

(i) The truth table of a logic circuit is as shown in the table Q5. Synthesize the circuit with a minimum number of NAND gates. (7 marks)

Inputs			Outputs	
А	В	\mathbf{C}	Y_1	Y_2
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

(ii)	Name examples of saturated logic families.	(2 marks)
(iii)	Differentiate between Positive logic and negative logic.	(4 marks)
(iv)	What function of asynchronous inputs of a flip flop?	(1 mark)
(v)	Give two examples of non-saturated logic families.	(2 marks)
(vi)	Define the time flip flop and hence explain the operation of a latch	with the use
	of a truth table.	(4 marks)