

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN TECHNOLOGY (ELECTRICAL POWER ENGINEERING)(DEPE2)

EEE 2101: ANALOGUE ELECTRONICS 1.

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt ANY THREE Questions
Do not write on the question paper.

Question ONE

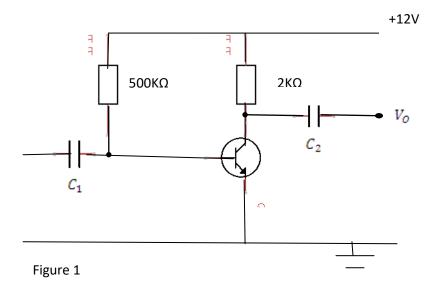
- a)Explain the following terms as used in diodes
 - i. Avalanche breakdown
 - ii. Zener effect
- (b) With the aid of a construction diagram explain the NPN transistor action (10 marks)
- c) Distinguish between the following classes of amplifiers illustrating with waveforms:
 - i. class A
 - ii. class B
- iii. class C (6 marks)
- (d)(i) With the aid of a circuit diagram explain the operation of a voltage doubler.
 - (ii) Explain the following terms as applied to cathode ray oscilloscope:-
 - I. Time base
- II. Synchronization

(4marks)

Question TWO

- a)(i) Explain any TWO factors that affect the Q-point of an amplifier
 - (ii) State how the factors in a(i) can be minimized

(6marks)


- (b)(i) Explain the term "Thermal runaway"
 - (ii)State any TWO effects of thermal runaway

(4marks)

- c)(i) For figure 1 circuit determine the values of:-
 - I. Collector current I_c
 - II. V_{CE}

Take $V_{BE} = 0.6$ V and $h_{fe} = 100$

- (ii) Determine the new values of c(i) if a resistor of $1k\Omega$ is connected between emitter and ground (6marks)
- (d)(i) Explain how d.c stabilization is achieved in an emitter feedback biasing circuit.
 - (ii) State the effect of removing the emitter decoupling capacitor in the biasing circuit of d(i) (6marks)

Question THREE

(a)(i) State any THREE methods of biasing a transistor

- (ii) Explain TWO purposes for each of the following
- I. d.c loadline
- II. a.c loadline
- (b) The characteristics of a BJT are given in table 1 below

The transistor has a collector load of 1500Ω , a supply voltage of 6V and a bias current of 40μ A

- i. Plot the characteristics
- ii. Draw the d.c and a.c loadlines on the characteristics
- iii. Calculate the power dissipated in the transistor
- iv. Calculate the total voltage swing at the collector for an a.c input signal current of 40µA peak in the base

	Collector Current $I_{\mathcal{C}}$ (mA)		
V_{CE}	<i>I_b</i> =0	$I_b=40\mu A$	<i>I_b</i> =80 μA
1	0.2	1.90	3.7
4	0.3	2.05	4.0
7	0.4	2.20	4.3

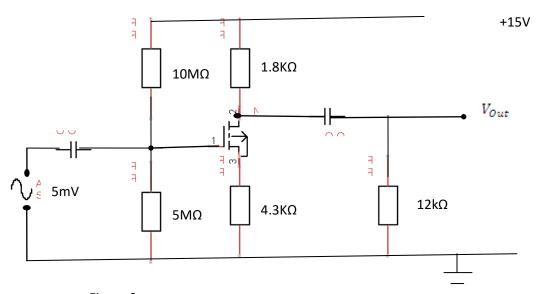
Table 1

Question FOUR

- (a)Define the following terms as applied to power supplies:
 - i. Ripple
 - ii. Peak Inverse voltage
- (b)(i) Draw a circuit diagram of a full wave bridge rectifier and explain its operation with the aid of waveforms.
- (ii) State any TWO advantages of full wave bridge rectifier over the centre-tapped.
- (iii) With the aid of a circuit diagram explain the operation of a zener diode regulator when:-
 - I. The load varies
 - II. The input voltage varies

(14marks)

- c) A 5.6V,1W zener diode regulator having a minimum current of 5mA is used in a shunt regulator to supply a constant load current of 20m from a supply voltage which varies between 15V and 24V. Calculate:
 - i. the suitable value of series resistor Rs
 - ii. the power rating of Rs in C(i) above
- iii. the power dissipated by the zener diode when the supply is at its maximum


Question FIVE

- (a)(i) With the aid of a construction diagram describe the operation of an n-channel JFET
 - (ii) State any TWO differences between FET_S and BJT_S

(10 marks)

- (b) For the JFET amplifier of figure 2 g_m =2000 μ s, Determine:-
- i. Its input impedance
- ii. a.c output resistance
- iii. output voltage

(6marks)

- Figure 2:
- c) Explain the following terms as applied in FETs
 - i. pinch-off voltage
 - ii. Transconductance

(4marks)