

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR:

CERTIFICATE IN ELECTRICAL POWER ENGINEERING (CEPE 3)

DIGITAL ELECTRONICS II

EEE 1203

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID
This paper consists of five Questions;. Attempt any THREE Questions.

Do not write on the question paper.

QUESTION ONE

- a. Define the following terms.
 - a. Fan in.
 - b. Fan out.
 - c. Propagation delay.
 - d. Noise immunity.
 - e. Noise margin.

(10 marks)

- b. A unit load for some particular logic family is as follows.
 - $1 \text{ UL} = 60 \mu A$ HIGH state.
 - 1 UL = 1 mA LOW state.

Determine the fan-in and fan-out for a gate in this family that has the following parameters.

 $I_{OH} = 400 \mu A$

 $I_{OL} = 10 \text{mA}$

 $I_{IH} = 150 \mu A$

 $I_{IL} = 4mA (4 marks)$

c. State and explain any three Logic families.

(3 marks)

d. A TTL logic gate draws 2mA when its output is **HIGH** and 3.5 mA when its output is **LOW**. Calculate the average power dissipation if the supply voltage is 5V and the Logic gate is operated on 50% duty cycle. (3 marks)

QUESTION TWO

(i) With the aid of a diagram describe the operation of DTL. (6 marks)

- (ii) Differentiate between:
 - i. Positive logic and negative logic.
 - ii. Current sinking and current sourcing.

(4 marks)

(iii) State four characteristics of RTL.

(4 marks)

- (iv) An office building has an elevator system consisting of three elevators A, B and C. A logic circuit is required that will provide an alarm any time two of the three elevators is in use.
 - i. Draw the truth table to satisfy the given conditions.
 - ii. Derive the expressions for the sum of products.

(4 marks)

(v) Decode the following 7-bit ASCII message.

10100100 1000001 1010100

(2 marks)

QUESTION THREE

- a. State three advantages and one disadvantage of CMOS over TTL. (4 marks)
- b. Explain one method of interfacing TTL to drive CMOS devices. (2 marks)
- c. Distinguish between the following as applied to sequential circuits.
 - i. Asynchronous and synchronous.
 - ii. Sequential and combinational logic circuits. (4 marks)
- d. Three sensors are used to monitor pressure **P**, temperature **T**, and voltage **V** of an industrial plant. An alarm **X** should sound for the following conditions:
 - ➤ If both temperature and voltage sensors are **OFF**.
 - ➤ If temperature sensor is **ON** and voltage sensor is **OFF**.
 - ➤ If pressure sensor is **OFF** and voltage sensor is **ON**.

Take ON = Logic 1

$$\mathbf{OFF} = \mathbf{Logic} \ \mathbf{0}$$

Required:

- i. Develop a truth table for the problem.
- ii. Obtain the Boolean expression relating **PTV** and **X**.
- iii. Minimize the expression using Karnaugh Map.
- iv. Implement the minimized expression using basic gates. (10 marks)

QUESTION FOUR

a. The clock and the input waveforms shown below are applied to the D input of a positive edge triggered D flip flop. Sketch the output waveforms. (4 marks)

- b. Design a MOD-6 synchronous counter using J-K Flip-Flops.
- (8 marks)

c. Determine the function F from the figure Q4.i

(3marks)

d. State any **THREE** applications of CMOS devices.

- (3 marks)
- e. State any **TWO** precautions to be considered when handling mosfets.
- (2 marks)

QUESTION FIVE

a. Draw the logic diagram of 4-bit odd parity checker using EX-NOR gates and explain its operation with the help of Truth table. (7 marks)

b. Design and implement a 3 bit even parity checker generator. (6 marks)c. With the aid of a diagram explain the operation of a latch. (4 marks)

d. State **THREE** applications of flip flops. (3 marks)