TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATIONS FOR DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

(BSME) Y3-S1

EMG 2312: METROLOGY

END OF SEMESTER EXAMINATIONS

SERIES: MAY 2016

TIME: 2 HOURS

INSTRUCTIONS:

- ❖ You should have; Answer booklet,; Drawing instruments and Scientific calculator
- ❖ This paper consists of FIVE questions
- ❖ Attempt any THREE questions.

This paper consists of THREE printed pages

QUESTION 1 (a) (i) In taking measurements using the gear tooth vernier, derive the expression for gear tooth width and height setting (5 marks)

- (ii) A spur gear of 28 teeth and module 5 is to have its teeth measured using the gear tooth vernier. Evaluate the vernier width and height setting (5 marks)
- b) (i) For a spur gear using the gear tooth vernier derive the expression for gear tooth width and height setting for the constant chord method (5 marks)
- (ii) A spur gear of 28 teeth and module 5 is to have its teeth measured by the constant chord method. Determine the vernier width and height setting (5 marks)

QUESTION 2 The following table gives the sample values of 20 samples of 4 items each. Plot the \ddot{X} and \ddot{W} -charts. Is the process in control? (20 marks)

Sample number				
1	1.16	1.25	0.66	0.56
2	0.84	0.82	0.92	0.6
3	0.97	0.94	0.99	0.9
4	1.0	0.94	1.5	1.18
5	0.750	0.97	0.47	0.73
6	0.92	0.6	0.82	1.14
7	1.17	1.0	0.85	0.36

8	0.68	0.93	0.89	1.13
9	1.0	0.91	0.6	0.68
10	0.97	0.87	0.71	0.89
11	0.73	0.66	0.79	0.59
12	0.82	0.77	0.67	0.70
13	0.9	1.25	1.00	0.81
14	0.57	0.62	0.61	0.69
15	0.61	1.02	1.45	0.93
16	0.81	1.00	1.25	0.9
17	0.71	0.94	0.87	0.84
18	0.97	1.06	1.10	0.89
19	1.12	0.73	0.62	0.78
20	0.68	0.61	1.00	1.11

QUESTION3

- a) Describe the main requirements of the sine bar. (5 marks)
- b) Figure Q3b shows a gauge made in the geometrical profile shown. Determine the dimension h to the nearest 0.002mm. On such a gauge the dimension h is found to be correct; but each of the 140° angles is found to be six minutes of arc oversize. Determine the error introduced into the dimension 1 to the nearest 0.002mm. (10 marks)
- c) Figure Q3c shows a method used to determine large radius of curvature by measuring dimension h. If the dimension h=28mm, determine the radius of curvature R. (5 marks)

QUESTION4

- a) With respect to testing of screw threads, derive the expression for:
 - (i) Best wire size
 - (ii) Simple effective diameter. (11 marks)
- b) On testing a given thread of flank angle 29° and pitch 3mm, the wire available was of diameter 2mm and resulted in the dimension T under the wires of 48.753mm. Determine:
 - i) Best wire size
 - ii) Simple effective diameter. (4 marks)
- c) Determine the diameter of a large bore measured with a pin gauge of length 500mm that rocks for 60mm. (5 marks)

QUESTION5

- a) (i) Derive from first principles the Dmax and Dmin expressions for the taper plug gauge shown (Fig Q5)
 - (ii)On such a taper plug gauge the roller diameter is 9mm, h=55mm, H=66mm, M_2 =48.37mm, M_1 =40.48mm and S=5mm. Determine:
 - (I) Taper angle
 - (II) D_s
 - (III) D_{min}
 - (IV) D_{max} (14 marks)
- b) The M87 set of slip gauges has the following pieces (Table Q5)

Range (mm)	Steps (mm)	No. of pieces

Wear blocks 2.5	-	2
1.001 to 1.009	0.001	9
1.01 to 1.49	0.01	49
0.5 to 9.5	0.5	19
10 to 90	10	9
1.0005	-	1
	Total	87

Select the slips to build a length of 87.3215mm (6 marks)

FACTORS USED IN x CHARTS

Sample size n	Warning factor	Action factor A ¹ 0-001	
2	1.229	1-937	
ĩ	0.668	1.054	
Ă	0.476	0.750	
5	0.377	0.594	
6	0.316	0.498	
7	0.274	0.432	
Ŕ	0.244	0.384	
o o	0.220	0.347	
10	0.202	0.317	

FACTORS USED IN w CHARTS

Sample size n	Upper action factor D10.999	Upper warning factor D10.975	Lower warning factor D ¹ 0.025	Lower action factor D10.001
2	4-12	2-81	0.04	0.00
3	2.98	2.17	0.18	0.04
4	2.57	1.93	0.29	0.10
7	2.34	1.81	0.37	0-16
3	2.21	1.72	0.42	0.21
7	2.11	1.66	0.46	0.26
0*	2.04	1.62	0.50	0.29
• 8	1.99	1.58	0.52	0.32
9 10	1.93	1.56	0.54	0-35

FIG Q2