TECHNICAL UNIVERSITY OF MOMBASA

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING SPECIAL/SUPPLEMENTARY UNIVERSITY EXAMINATIONS 2015/2016

FOURTH YEAR FIRST SEMESTER SPECIAL/SUPPLEMENTARY UNIVERSITY EXAMINATION FOR THE DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING (BSME)

EMG 2401: INDUSTRIAL HYDRAULICS

SERIES: AUGUST 2016

TIME: 2 HOURS

INSTRUCTION TO CANDIDATES:

- 1. You should have the following for this examination:-
 - Answer Booklet
 - Scientific Calculator
- 2. This paper consists of FIVE Questions
- 3. Question ONE is COMPULSORY
- 4. Answer any other TWO Questions
- 5. Question ONE carries 30 Marks and the other FOUR questions carry 20 Marks each
- 6. All symbols have their usual meaning unless specified otherwise

QUESTION ONE: (COMPULSORY: 30 Marks)

- a) State FIVE (5) advantages of hydraulic systems over other methods of power transmission.
 (5 Marks)
- b) i) Name two types of hydraulic pump in each of the following categories:
 - Non-Positive Displacement
 - Positive Displacement
 - ii) With the aid of a sketch, explain the operation of a lobe pump. (8 Marks)
- c) Illustrate the operations of the following types of cylinders as used in hydraulic systems:
 - i) Double rod cylinder
 - ii) Single acting cylinder with spring.

With the aid of a sketch, explain the construction of a Tie-Rod Cylinder. (9 Marks)

- d) i) Differentiate a Relief valve from a Sequence valve in pressure control valves.
- ii) Outline the FOUR variables upon which the flow of hydraulic fluid depends on in a Throttle valve. (8 Marks)

QUESTION TWO: (20 Marks)

- a) $10 \frac{m^3}{h}$ of water flows through a pipe of 100 mm inside diameter. The pipe is later reduced to an inside diameter of 80 mm. Calculate the flow velocity in each pipe. (4 Marks)
- b) A new sewer line plan calls out a 0.6% slope of the line. An elevation reading of 108.8 feet at the manhole discharge and an elevation of 106.2 feet at a distance of 200 feet from the manhole are recorded. What is the existing slope of the line that has been installed? (2 Marks)
- c) Hydraulic oil ISO 68 is flowing through a hydraulic line with inside diameter 0.05m at a rate of 200 gpm. Find the pressure drop in psi for a 3m length of hose.
 - Given: Hydraulic oil ISO 68 has a density of 880 kg/cu-m and a kinematic viscosity of $6.8 \times 10^{-5} \, m^2 / _{S}$ at 104 F. (6 Marks)
- d) A hydraulic hose with internal diameter of 25 mm is carrying oil with kinematic viscosity of $5.0 \times 10^{-5} \, m^2 / s$ at a flow rate of 20 gpm. Calculate the Reynolds number and determine if the flow is laminar or turbulent. (3 Marks)
- e) Mention TWO different types of pressure control valves and state their use in a hydraulic system. (2 Marks)
- f) Assisted by a graphical diagram, state the meaning of the following terms as applied to a pressure relief valve:

• Cracking pressure (1 Mark)

• Full-flow pressure (1 Mark)

Pressure over-ride (1 Mark)

QUESTION THREE: (20 Marks)

- a) i) Outline three functions of hydraulic system reservoirs.
 - ii) Explain the principle of operation of the following hydraulic filters.
 - Surface filtration
 - Depth filtration (5 Marks)
- b) A hydraulic system is to be designed for clamping work and to perform drilling operation. The system is to consist of the following components:
 - Reservoir
 - Pump
 - Relief Valve
 - Manually operated spring centered three position four way directional control valve.
 - Two sequence valves
 - Two double acting actuators

Using two line diagram and hydraulic symbols, design and draw a suitable circuit diagram for the system. (15 Marks)

QUESTION FOUR: (20 Marks)

 There are several hydraulic systems used in the industries. Explain the working principles of the following basic hydraulic systems (use sketches):

i)	Hydraulic Jack	(3 Marks)
ii)	Flow divider	(3 Marks)
iii)	Close Center System	(3 Marks)

- b) With the aid of diagram, state the following:
 - i) Interaction of hydraulic and atmospheric pressures. (3 Marks)ii) Effect of friction on pressure (3 Marks)
- c) Outline two possible causes and remedies for each of the following trouble in hydraulic system:
 - i) Absence of proper speed and torque of the hydraulic motor.
 - ii) Sudden drop of pressure in the accumulator. (5 Marks)

QUESTION FIVE: (20 Marks)

- a) i) Mention FOUR major functions of a hydraulic accumulator (2 Marks)
- ii) Assisted by diagrams, differentiate between a spring-loaded accumulator and a Bagtype accumulator. For any of these accumulators, describe its operations and the limitations.

 (4 Marks)
- b) i) Differentiate between filters and strainers and name the THREE parts of a Full-flow hydraulic filter and their functions. (4 Marks)
- ii) Describe the structure and operation of a proportional flow filter and state when it can be used. (3 Marks)
- c) The hose supplying the cylinder operating the bucket of a large excavator has fluid at 1000 psi flowing at 5 gpm. What is the available power in the line? (7 Marks)

USEFUL RELATIONSHIPS:

TABLE 1: Conversion between Pressure Units

	Pascals	Megapascal	Bar	lbs-sq-in
	(Pa)	(MPa)	(Bar)	(Psi)
1 Pa	1	10^{-6}	10^{-5}	145×10^{-6}
1 MPa	10^6	1	10	145
1 Bar	10 ⁵	0.1	1	14.5
1 Psi	6895	6.895×10^{-3}	0.06895	1

TABLE 2: Conversion between Volume Flow Rate Units

	gallons/minute	liter/minute	cubicmeter/sec
	(gpm)	(lpm)	(m^3/s)
1 gpm	1	3.785	6.31×10^{-5}
1 lpm	0.264	1	1.67×10^{-5}
$1m^3/s$	1.585×10^4	6×10 ⁴	1