

TECHNICAL UNIVERSITY OF MOMBASA

Paper 2

EXAMINATION RUBRIC

FACULTY ENGINEERING AND TECHNOLOGY

DEPARTMENT ELECTRICAL & ELECTRONIC

Common

Not common

COURSE/CLASSBachelor of Science in Electrical and Electronic EngineeringUNIT CODEEEE 2419

PAPER Microwave

SERIES May 2016

NO. OF STUDENTS	_	

INSTRUCTION TO CANDIDATES

Answer Question One (Compulsory) and any other Two Questions

Name of setter: Stephen Sande

Name of moderator: Prof. Heywood Ouma

Date submitted to examination centre

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR :

THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING

EEE 2419 MICROWAVE

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME : 2 HOURS

DATE:

Instructions to Candidates

You should have the following for this examination:

- Answer Booklet, examination pass and student ID

This paper consists of five questions;

Question ONE is compulsory. In addition attempt any other TWO questions

$$\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} \, F/m$$
; $\mu_0 = 4\pi \times 10^{-7} \, H/m$

Do not write on the question paper

Question ONE (Compulsory 30 marks)

- (a) Explain why microwave frequencies are suitable for the following applications:
 - (i) Wireless systems (ii) Digital transmission systems (iii) Radar Systems
 - (iv) Satellite and terrestrial communication links (v) Heating (10 marks)

- (b) Consider an electromagnetic wave which is incident on a boundary. Derive expressions for:
 - (i) reflection coefficient
 (ii) transmission coefficient
 (iii) time- averaging
 9 marks)
- (d) (i) Describe using appropriate sketches the principle of operation of a reflex klystron amplifier.
 - (ii) Distinguish between a reflex klystron and a travelling wave tube (TWT). (11 marks)

Question TWO

- (a) (i) State the Poynting theorem
 - (ii) Explain the significance of the terms in a (i) using appropriate sketches. (7 marks)
- (b) Starting from the three dimensional Helmholtz equation, derive expressions for transverse and longitudinal fields for TE modes in a rectangular waveguide. (13 marks)

Question THREE

(a)	State the FOUR Maxwell's equations in point form and explain the significance of eac	ch in	
	electromagnetic theory.	(6 marks	3)

- (b) With the aid of suitable sketches explain the principle of operation of transferable electron device (GUNN diode) (5 marks)
- (b) Explain the main electrical features of the following microwave devices:
 - (i) IMPATT diode (ii) TRAPATT diode (iii) BARITT diode (6 marks)
- (C) Highlight THREE classifications of magnetrons. (3 marks)

Question FOUR

- (a) (i) With the aid of a suitable diagram explain the Manley-Rowe equation explaining its significance in parametric amplification.
 - (ii) Distinguish between an up-converter parametric amplifier and a negative resistance
 parametric amplifier in terms of their principle of operation. (13 marks)
- (b) (i) Explain if power measurement techniques used at dc or low frequencies can be applied to microwave frequencies. If not why.
 - (ii) Describe using suitable measurement apparatus the procedure for measuring low microwave power levels. (7 marks)

Question FIVE

(a) With the aid of a schematic diagram describe the operation of four port microwave circulator.

(6 marks)

- (b) Describe two sources of losses in hollow rectangular waveguides (4 marks)
- (c) An air-filled rectangular waveguide has cross-sectional dimensions:

$$a = 8cm$$
 $b = 4cm$

- (i) Find the cut-off frequency for the following modes, TE_{10} , TE_{20} , TE_{01} , TE_{02} , TE_{11} TE₁₂, and TE₂₁ modes.
- (ii) Determine the dominant mode (iii) Determine the degenerate modes (10 marks)