TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering \& Technology
 Department of Building \& Civil Engineering UNIVERSITY EXAMINATION FOR DIPLOMA IN: DIPLOMA IN CIVIL ENGINEERING (DBCE y3s2)
 (DBCE/JAN 2014)

ECV 2304: HYDRAULICS

END OF SEMESTER EXAMINATION
 SERIES: MAY 2016
 TIME ALLOWED: 2 HOURS

Instruction to Candidates;

You should have the following for this examination;

- Answer booklet
- Pocket calculator

This paper consists of FIVE questions. Answer ANY THREE questions.
Use neat, large and well labelled diagrams where required
Maximum marks for each part of a question are as shown
This paper consists of $\boldsymbol{F O U R}$ printed papers.

Question One

a) A rectangular concrete channel is 3 m wide and 2 m high. The water in the channel is 1.5 m deep and is flowing at a rate of $25 \mathrm{~m}^{3} / \mathrm{s}$.
Determine the;
i) flow area,
ii) wetted perimeter,
iii) Hydraulic radius.
iv) Is the flow laminar or turbulent?
(8 marks)
b) Define a hydraulic grade.
(2 marks)
c) Define the following terms;
(i) Weir
(ii) Notches
(4 marks)
d) Briefly explain THREE applications of weirs.

Question Two

a) Determine the best hydraulic best section for a rectangular channel.
(7 marks)
b) Determine the slope of unfinished concrete channel below (Fig; 1) if $\mathrm{Q}=27.35 \mathrm{~m}^{3} /$ sec.

Fig; 1
c) Briefly explain working principle of a reciprocating pump.

Question Three

a) Briefly describe the difference between a turbulent and a laminar flow.
(4 marks)
b) Water is flowing 0.95 m deep in a 1.8 m wide open channel of rectangular crosssection. Determine the type of flow experienced in the channel.
(7 marks)
c) An individual turns on the cold water tap in the kitchen. Water flows to the tap through a copper pipe 6.00 mm diameter at a velocity of $1.00 \mathrm{~m} / \mathrm{s}$. The density of the water in the pipe is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and its viscosity is 0.00133 Pa.s.
Determine;
(i) Reynold's number
(ii) Type of flow
(6 marks)
d) Briefly describe the working principle of a centrifugal pump.

Question Four

a) Determine the most efficient hydraulic dimensions for a trapezoidal section.
(10 marks)
b) Design a rectangular unfinished concrete channel of, $Q=5.95 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{S}=1.2 \%$ and Normal depth $=1 / 2$ of the width of the channel
(7 marks)
c) Briefly explain the difference between a varied steady flow and gradually varying flow.
(3 marks)

Question Five

a) Briefly state THREE differences between a positive-displacement and kinetic pumps.
b) Given;

A triangular channel with side slopes having ratio of $1: 1.5, \mathrm{Q}=0.29 \mathrm{~m}^{3} / \mathrm{s}$, channel is clean of excavated earth.
Determine;
(i) Depth
(ii) Velocity of flow
(iii) Froude number.
c) Define the following terms;
(i) Steady flow
(ii) Uniform flow
(iii) Uniform steady flow.

APPENDIX

Channel Description	\boldsymbol{n}
Glass, copper, plastic, or other smooth surfaces	0.010
Smooth, unpainted steel, planed wood	0.012
Painted steel or coated cast iron	0.013
Smooth asphalt, common clay drainage tile, trowel-finished concrete,	
glazed brick	0.013
Uncoated cast iron, black wrought iron pipe, vitrified clay sewer tile	0.014
Brick in cement mortar, float-finished concrete, concrete pipe	0.015
Formed, unfinished concrete, spiral steel pipe	0.017
Smooth earth	0.018
Clean excavated earth	0.022
Corrugated metal storm drain	0.024
Natural channel with stones and weeds	0.030
Natural channel with light brush	0.050
Natural channel with tall grasses and reeds	0.060
Natural channel with heavy brush	0.100

