

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MEDICAL ENGINEERING UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING (DME 215 Y3 S1)

ECL 2302: IMAGING EQUIPMENT I END OF SEMESTER EXAMINATION

SERIES:APRIL2016

TIME:2HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID
This paper consists of **FOUR** questions. Attempt any THREE questions. **Do not write on the question paper.**

QUESTION ONE

(a) Differentiate the TWO main classifications of ionization radiation sources.

(4Marks)

(b) With the aid of sketches describe the two sources of x-rays radiation.

(10Marks)

(c) List any Six properties of x-rays.

(6Marks)

QUESTION TWO

(a) Describe any FOUR uses/applications of x-rays in different fields

(8Marks)

(b) Describe the production of x-rays, using a basic circuit

(6Marks)

(c) Differentiate between:

- i. Filament current and tube current
- ii. x-ray quality and quantity
- iii. hard x- rays and soft x-rays

(6Marks)

QUESTION THREE

- (a) Explain the need for interlock circuits in x-tray equipment. (4Marks)
- (b) Describe the functions/needs of any SIX interlock circuit in an x- ray equipment

(12Marks)

(c) List any FOUR properties of nucleus radiation. (4Marks)

QUESTION FOUR

Write a standard laboratory practical report you carried out during the course of your study on Imaging Equipment on cable/line resistance determination.

(20Marks)

QUESTION FIVE

An x-ray generator has the following data, 410V/6 pulse/ $150KeV/800mA/1s/85000N_S$ was used to produce a chest radiograph with the following exposure data 72KeV/540mA/0.05Sec, from the give data calculate:

- (i) Maximum primary current when the x-ray generator is operated at its maximum values.
- (ii) Primary current due to the selected exposure data
- (iii) Primary side transformer windings (N_P)
- (iv) Resultant power in watts due to the exposure
- (v) Electrons flow count due to exposure

(20Marks)