

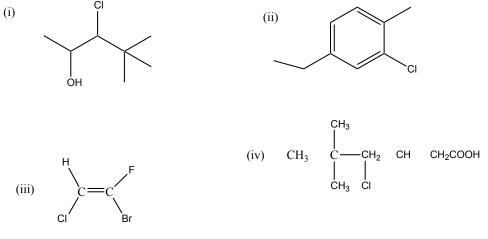
Technical University of Mombasa

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF BUILDING & CIVIL, ELECTRICAL & ELECTRONICS AND MECHANICAL & AUTOMOTIVE ENIGINEERINGS BSC/BENG

SCH 2108 : CHEMISTRY II


SUPPLEMENTARY/SPECIAL EXAMINATION

JULY 2013 SERIES 2 HOURS Instructions to candidates:

This paper consist of **FIVE** questions Answer question **ONE** (compulsory) and any other **TWO** questions

Question ONE

a) Provide IUPAC names of the following compounds, indicating the stereochemistry where appropriate:

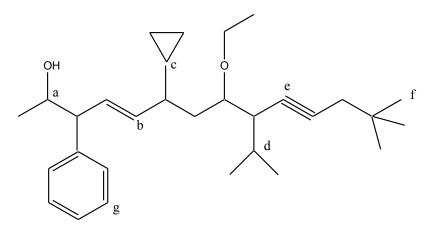
(4marks)

- b) Draw the structure of each of the following compounds:
 - (i) (E) -2-Bromo-1-chloro-1-floroethene
 - (ii) 4-Hydroxy-3-methyl pentanal
 - (iii) 2-Ethyl-3-methyl but -1-ene
 - (iv) 2-Bromo -4,6-dinitrophenol

(4marks)

- c) State the three types of hybridization which can be adopted by a carbon atom. (3marks)
- d) Draw the structural types of hybridization which can be adopted by a carbon atom.

(3marks)


- e) Give THREE simple visual chemical test you would perform to differentiate between the pair of compounds below. Explain what happens in each case. (3marks)
- f) Compare the reactivity of aldehydes and ketones, stating with reasons, which one is more reactive towards nucleophilic addition. (3marks)
- g) Name any two alkylhalides and give one use for each (2marks)
- h) Write the formula and name of product formed from the reaction of ethanol with sodium metal. (2marks)
- i) An organic compound contains 48.7% carbon, 8.2% hydrogen and the rest oxygen. Write its empirical formula. (C=12, O =16, H =1) (3marks)
- j) Write the reaction mechanism for the following transformation using curly arrows:

 $(CH_3)_3CCI + CH_3OH \longrightarrow (CH_3)_3C-OCH_3$

(3marks)

Question TWO

- a) Differentiate between σ -bonds, giving one example in each case. (3marks)
- b) You are provided with the structure of an organic compound 1 below.

Compound I

(i) Indicate the type of hybridization present on the carbon labeled b and e.

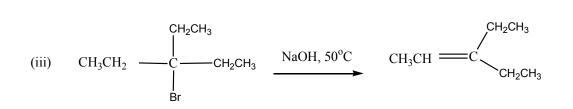
(3marks)

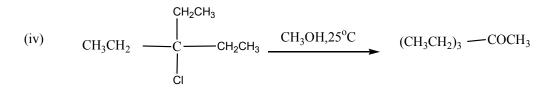
(ii)	Show diagrammatically how electrons are hybridized in carbon f.	(3marks)
(iii)	Using letters, name tertiary and primary carbons.	(1mark)
(iv)	Draw and label all functional groups in compound 1.	(2marks)
(v)	State the type of bonds in f and g.	(2marks)

c) Complete combustion of 0.1g of a sample of a compound Z gives 0.228g of carbon dioxide (CO₂) and 0.0931g of water (H₂O). The molecular mass of the compound is 174. (C =12.01, H = 1.008, O = 15.99)

(i)	Calculate the mass of oxygen in compound Z.	(5marks)
(ii)	Determine the empirical formula of compound Z.	(2marks)

Question THREE


- a) Define the following terms as used in organic chemistry:
 - (i) Pyrolysis
 - (ii) Homologous series


(4marks)

- b) State TWO important properties of C=C double bonds (2marks)
 c) Differentiate between nucleophile and electrophile. (2marks)
- d) Indicate by using δ^+ and δ^- the polarity of the C and Cl atoms in CH₃Cl. (1mark)
- e) List the following aldehydes in terms of increasing reactivity and give reasons for your choice.

$$Cl_2CHCHO, ClCH_2CHO, Cl_3CCHO, CH_3CHO$$
 (4marks)

- f) Study the following reactions and predict and predict the predominant reaction mechanism whether it is $S_N 1$, $S_N 2$, E1 or E2.
 - (i) $CH_3CH_2CH_2Br \xrightarrow{CH_3OH,50^{\circ}C} CH_3CH_2CH_2OCH_3$
 - (ii) $CH_3CH_2CH_2Cl \xrightarrow{(CH_3)_3COH,50^{\circ}C} CH_3CH=CH_2$

(g) Write the reaction mechanism for the transformation below using curly arrows:

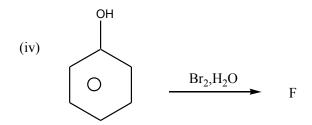
g) Give three simple visual chemical tests you would perform to distinguish between n-butane and 1, 3-butadiene. (3marks)

Question FOUR

a) Explain why tertiary carbonations are more compared to other classes of carbonations.

(3marks)

b) Give THREE simple visual chemical tests, including observations that would differentiate the following compounds:



c) Provide the structures A to F of the major organic compounds that are expected in the following reactions. Indicate stereochemistry where necessary:

(i)
$$A \xleftarrow{HBr}{CH_3CH=CH_2} \xrightarrow{HBr}{B}$$

(ii)
$$C \xleftarrow{\text{Lindlar's}}_{\text{Catalyst}} CH_3CH_3 \xrightarrow{\text{CCH}_3 + H_2} D$$

(iii)
$$CH_3(CH_2)_4CH_2Br$$
 $LiAlH_4 \rightarrow E$
Ether

d) Give the reagents (w, x, y) required to carry out the following transformations:-

(i)
$$CH_3COOH + CH_3CH_2OH \longrightarrow CH_3CO_2CH_2CH_3$$

(ii)
$$CH_3CH_2COCH_3 \xrightarrow{X} CH_3CH_2CHCH_3$$

(iii) $CH_3CH = CHCH_3 \xrightarrow{Y} 2CH_3COOH$

(3marks)

- e) Explain the following observations:
 - (i) Ester is formed from the reaction of alcohols and carboxylic acid in acidic solution and not in basic solution. (2marks)
 - (ii) The b.p. of ethanedioic acid is higher compared to ethanoic acid. (3marks)

Question FIVE

a) Name the TWO monosaccharide write that make up each of the following disaccharides.

(i)	Maltose	(2marks)
(ii)	Lactose	(2marks)
(iii)	Sucrose	(2marks)

- b) Draw the structures of glucose and fructose, showing the difference in their structures. (4marks)
- c) Give THREE important properties of monosaccharide's (3marks)
- d) State the FOUR main components that make up the general structure of amino acid.

(2marks)

- e) Classify the following amino acids as aromatic, aliphatic acidic or basic:
 - (i) Alamine
 - (ii) Tryptophan

(2marks)

f) Give any THREE functions of protein. (3marks)