TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MEDICAL ENGINEERING
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MEDICAL ENGINEERING
 AMA2151:ENGINEERING MATHEMATICS II END OF SEMESTER EXAMINATION
 SERIES:APRIL2016
 TIME:2HOURS

DATE:9May2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

a)
i) Differentiate from the first principle $y=x^{3}$
ii) Determine $\int \frac{1}{\sqrt{a^{2}-x^{2}}}$
(10 marks)
b) Express the roots of $(-10+j 2)^{\frac{-3}{6}}$ in polar form
c)
i. Determine the logarithmic form for $\sinh ^{-1} x$
ii. Using the series expansion for $\cosh x$, evaluate $\cosh 2.8$ correct to five significant figures
(10 marks)

Question TWO

a) Solve the equation $2.6 \cosh x+5.1 \sinh =8.73$ correct to four decimal places
b) Determine the series for $\cosh \frac{\theta}{2}-\sinh 2 \theta$
c) Evaluate $\sinh x=3$ correct to three decimal places

Question THREE

a) The parametric equations for a hyperbola are $x=2 \sec \theta, y=\tan \theta$. Evaluate
i. $\frac{d y}{d x}$
ii. $\frac{d^{2} y}{d x^{2}}$ taking $\theta=1 \mathrm{rad}$
(10 marks)
b) Determine the derivative for the following
i. $y=\frac{\sin x}{\cos x}$
ii. $y=\frac{(3 x-1) \cos 2 x}{e^{2 x}}$
(10 marks)

Question FOUR

a) Evaluate $\int_{0}^{\frac{\pi}{4}} 4 \cos ^{4} \theta d \theta$
(10 marks)
b) Determine $\int \frac{3 x^{2}+18 x+3}{3 x^{2}+5 x-2}$
(10 marks)

Question FIVE

a) Given an alternating voltage of $240 \mathrm{~V}, 50 \mathrm{~Hz}$ connected across an impedance of $(60-j 100) \Omega$ determine
i. resistance
ii. capacitance
iii. impedance
iv. phase angle
v. current flowing
(10 marks)
b) i) express $\frac{(6+j)(2-j)}{(4+3 j)(1-2 j)}$ in the form $a+j b$
ii) convert $7<-145^{\circ}$ into rectangle form
iii) express $\frac{(2+j)^{2}}{3-j}$ in the form $r(\cos \theta+j \sin \theta)$ (10 marks)

