

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

AMA2151: ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION

SERIES:APRIL2016

TIME:2HOURS

DATE:9May2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

a)

i) Differentiate from the first principle $y = x^3$

ii) Determine $\int \frac{1}{\sqrt{a^2-x^2}}$

(10 marks)

b) Express the roots of $(-10 + j2)^{\frac{-3}{6}}$ in polar form

(10 marks)

c)

i. Determine the logarithmic form for $sinh^{-1} x$

ii. Using the series expansion for $\cosh x$, evaluate $\cosh 2.8$ correct to five significant figures

(10 marks)

Question TWO

a) Solve the equation 2.6coshx + 5.1sinh = 8.73 correct to four decimal places

(6 marks)

b) Determine the series for $cosh\frac{\theta}{2} - sinh 2\theta$

(8 marks)

c) Evaluate
$$\sinh x = 3$$
 correct to three decimal places

(6 marks)

Question THREE

a) The parametric equations for a hyperbola are $x = 2sec\theta$, $y = tan \theta$. Evaluate

i.
$$\frac{dy}{dx}$$

ii.
$$\frac{d^2y}{dx^2} \text{ taking } \theta = 1 \text{ rad}$$
 (10 marks)

b) Determine the derivative for the following

i.
$$y = \frac{\sin x}{\cos x}$$

i.
$$y = \frac{\sin x}{\cos x}$$

ii.
$$y = \frac{(3x-1)\cos 2x}{e^{2x}}$$
 (10 marks)

Question FOUR

a) Evaluate
$$\int_0^{\frac{\pi}{4}} 4 \cos^4 \theta \, d\theta$$
 (10 marks)

b) Determine
$$\int \frac{3x^2 + 18x + 3}{3x^2 + 5x - 2}$$
 (10 marks)

Question FIVE

a) Given an alternating voltage of 240V, 50Hz connected across an impedance of $(60 - j100)\Omega$ determine

- i. resistance
- capacitance ii.
- iii. impedance
- iv. phase angle

b) i) express
$$\frac{(6+j)(2-j)}{(4+3j)(1-2j)}$$
 in the form $a+jb$
ii) convert $7 < -145^{\circ}$ into rectangle form

iii)express
$$\frac{(2+j)^2}{3-j}$$
 in the form $r(\cos\theta + j\sin\theta)$ (10 marks)