FACULTY OF ENGINEERING AND TECHNOLOGY ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT CERTIFICATE IN ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT CODE: 1250
ENGINEERING MATHEMATICS III SPECIAL / SUPPLEMENTARY EXAMINATIONS
SERIES JANUARY 2016
PAPER DURATION 2HRS

INSTRUCTIONS TO CANDIDATES
Candidates must have answer Booklet, Mathematics Tables, Scientific Calculation, No Mobile Phone, Question one compulsory and any other two.

Question one:

(a) (i) Given that $a(x)=4 x, b(x)=x^{2} C(x)=x-5$ and $d(x)=\sqrt{x}$ Find $f(\mathrm{x})=\mathrm{a}(\mathrm{b}(\mathrm{c}[\mathrm{d}(\mathrm{x})])$
(ii) If $f(x)=x^{2}$ express as simply as possible $f(a+h)-f(a) \quad(h \neq 0)$ h
(b) (i) Prove from definition and series of e^{x} and e^{-x} that
(ii) If thx $=1 / 3$ find $e^{2 x}$
(2mks)
(iii) If $2 \operatorname{ch} x+4 \operatorname{shx}=A e^{x}+B e^{-x}$. Find A and B
(c) Integrate:
(i) $\quad \mathrm{I}=\int \mathrm{x}(3-2 \mathrm{x})^{4} \mathrm{dx}$ by putting

$$
2=3-2 x
$$

(4mks)
(ii) $\quad I=\int \underline{d x}$

$$
\begin{equation*}
(3 x+2)^{2} \tag{3mks}
\end{equation*}
$$

(d) Determine the following
(i) $\int\left(3 x^{4}-4 x^{1 / 3}+3\right) d x$
(ii) $\int 3 \cos 2 x d x$
(iii) Verify by integration that the area of the triangle formed by the line $y=2 x$, the ordinates.
$x=0$ and $x=6$ and the x - axis is 36 square units

QUESTION TWO:

(a) (i) Given that $\mathrm{f}: \mathrm{x} \longrightarrow 5 \mathrm{x}+1$ and that $\mathrm{g}: \mathrm{x} \longrightarrow \mathrm{x} 2$ express the composite function. fg and gf in their simp test possible firms.
(3mks)
(ii) Given that $f(x)=x^{3}$ find

$$
\begin{equation*}
f(a+h)-f(a-b) \quad(h \neq 0) \tag{3mks}
\end{equation*}
$$

(b) Given that $\mathrm{f}(\mathrm{x})=25-\mathrm{x}^{2}$ and that $\mathrm{g}(\mathrm{x})=\sqrt{\mathrm{x}}$ find where possible the values of
(i) $\mathrm{gf}(0)$
(ii) $\quad \mathrm{gf}(4)$
(iii) $\quad \mathrm{gf}(13)$
(2mks)
(2mks)
(3mks)
(c) (i) The domain of f is IR (where IR is a set of real numbers
$f: x \rightarrow 1$ when $x<0$ and
$f: x \rightarrow x^{2}+1$ when $x \geq 0$
sketch the graph of the function
(ii) Given that $\mathrm{f}(\mathrm{x})=10 \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+3$. Find $\mathrm{fg}(\mathrm{x})$ and $(\mathrm{fg})^{-1}(\mathrm{x})$

Verify that if $b=f g(a)$ then $(f g)^{-1}(b)$

QUESTION THREE

(a) Using simpson's rule with 8 intervals, evaluate $\int_{1}^{3} y d x$ where the values of y at regular intervals of x are given.

x	1.0	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00
y	2.45	2.80	3.44	4.20	4.33	3.97	3.12	2.38	1.80

(12mks)
(b) (i) Find the are bounded by
$Y=5+4 x-x^{2}$, the x - axis and the ordinates $x=1$ and $x=4$
(ii) Given that volume of solid of revolution is given by \int_{a}^{b} my 2 dx

By rotating about the x-axis. Find the volume of the solid generated by rotating about the x-axis, the are under $y=5 \cos 2 x$ from $x=0$ to $x=\underline{4}$

QUESTION FOUR

(a) (i) Find all first and second partial derivative of

$$
\begin{equation*}
2=3 x^{2}+2 x y+4 y^{2} \tag{3mks}
\end{equation*}
$$

(ii) If $V^{2}=X^{2}+Y^{2}+Z^{2}$ Show that

$$
\begin{equation*}
\frac{d^{2} v}{d x^{2}}+\frac{d^{2} v}{d y^{2}}+\frac{d^{2} v}{d z^{2}}=\frac{z}{v} \tag{8mks}
\end{equation*}
$$

(b) (i) Determine the approximate are between the curve $y=x^{3}+x^{2}-4 x-4$, the ordinates $x=-3$ and $x=3$ and the x - axis by applying Simpsons rule.
(ii) Compare the results of b (i) above with the true area obtained by Integration

QUESTION FIVE

(a) Integrate each of the following as per method indicated
(i) $\bar{i}=\int x^{2} e x d x \quad$ by parts
(ii) $\left.\bar{i}=\int \frac{1}{(x+1)^{2}\left(x^{2}\right.}+4\right)$
by partial fractions
(iii) $\bar{I}=\int \operatorname{Sin}^{3} x d x \quad$ by trigonometric formation
(b) Evaluate the following
(c) $I=\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y$
(4mks)
(d) $I=3 \int_{1}^{3} \int_{-1}^{1} \int_{0}^{3}(x+2 y-2) d x d y d z$

