

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED & HEALTH SCIENCES

MATHEMATICS & PHYSICS DEPARTMENT

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS AND BACHELOR

OF TECHNOLOGY IN ENVIRONMENTAL PHYSICS & RENEWABLE

ENERGY

APS 4304: CLASSICAL MECHANICS

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of 4 questions. Do not write on the question paper. Answer question ONE (compulsory) and any other two questions.

SECTION A (30POINTS)

QUESTION 1

(a) (i) Give the expression for angular momentum in terms of **r** and **p** where **r** is the

displacement and **p** is the linear momentum of a particle moving in a circle

of radius l**r**l.

[3points]

(ii) The torque of on an object is given by N =rXF where F is the force creating the

torque. Show that $\frac{d}{dt}$ L =Nand explain what it means when N = 0. [4points]

(b) A bat of mass m perches on the outside of edge of a freely turning ceiling fan of

rotational inertia I and radius r. By what ration does the angular momentum of the fan

[5points]

[5points]

change?

(c) Consider a one dimensional potential,

$$U(x) = -\frac{wl^2(x^2 + l^2)}{x^4 + 8l^4}$$

(i) Sketch the potential.

(ii) Is the motion bounded or unbounded? [3points

(iii) Where are the equilibrium values and are they stable or unstable? [5points]

(d) The total energy of some particle is given by the equation

$$E = T + U$$
. Assuming that $\mathbf{F.dr} = d\left(\frac{1}{2}mv^2\right) = dT$, show that
$$\frac{dE}{dt} = (\mathbf{F}.\nabla U).\mathbf{r} + \mathbf{p}, \text{ where } \mathbf{p} = \frac{\partial U}{\partial t}$$
[5points]
SECTION B

QUESTION 2

(a) In the figure above, a block slides down an inclined plane without friction.

(i) Compute its acceleration [3points]

(ii) Compute its velocity after it has moved a distance x_0 down the plane from rest. [5points]

(iii) If the coefficient of friction between the block and plane is $\mu_s = 0.4$, at what angle

θ will the block start sliding if it is initially at rest?	[6points]	
(b) Find the displacement of a particle undergoing vertical motion in a medium having		
a retarding force proportional to the velocity.	[6points]	
QUESTION 3		

- (a) A system consists of a spring whose one end is fixed to an immovable wall while the other end is a mass m kg attached to it. The spring which has a spring constant k is stretched a distance x and released.
- (i) Write down the equation of motion of the mass. [3points]
 (ii) Solve the equation in a general form and decide which part of the equation satisfies the physical condition of the system. [7points]
 (iii) What are the frequency and period of the oscillation mass? [4points]
 (iv) Compute the maximum potential energy and maximum kinetic energy of the mass. [6points]

QUESTION 4

(a) Consider a projectile motion in two dimensions. Find the equation	n of motion in	
both Cartesian and polar coordinates.	[8points]	
(b) (i)A particle is constrained to move on the inside surface of a smooth cone		
of half angle $ lpha$.The particle is subject to a gravitational force. Determine a		
set of generalized coordinates and find the constraints.	[7points]	
(ii) Find the Lagrange's equations of motion	[5points]	