TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF APPLIED \&HEALTH SCIENCES
MATHEMATICS \& PHYSICS DEPARTMENT
UNIVERSITY EXAMINATION FOR:
BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS AND BACHELOR
OF TECHNOLOGY IN ENVIRONMENTAL PHYSICS \& RENEWABLE
ENERGY

# APS 4304: CLASSICAL MECHANICS END OF SEMESTER EXAMINATION 

## SERIES: MAY 2016

TIME: 2 HOURS
DATE: MAY 2016

## Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 4 questions.
Do not write on the question paper. Answer question ONE (compulsory) and any other two questions.

SECTION A (30POINTS)

## QUESTION 1

(a) (i)Give the expression for angular momentum in terms of $\mathbf{r}$ and $\mathbf{p}$ where $\mathbf{r}$ is the displacement and $\mathbf{p}$ is the linear momentum of a particle moving in a circle of radius lrl. [3points]
(ii) The torque of on an object is given by $\mathrm{N}=\mathrm{rXF}$ where F is the force creating the torque. Show that $\frac{d}{d t} \mathbf{L}=\mathbf{N a n d}$ explain what it means when $\mathbf{N}=0$. [4points]
(b) A bat of mass $m$ perches on the outside of edge of a freely turning ceiling fan of rotational inertia I and radius $r$. By what ration does the angular momentum of the fan
change?
(c) Consider a one dimensional potential,
$U(x)=-\frac{w l^{2}\left(x^{2}+l^{2}\right)}{x^{4}+8 l^{4}}$
(i) Sketch the potential.
(ii) Is the motion bounded or unbounded?
(iii) Where are the equilibrium values and are they stable or unstable? [3points
(d) The total energy of some particle is given by the equation
$E=T+U$. Assuming that $\mathbf{F} . \mathbf{d r}=d\left(\frac{1}{2} m v^{2}\right)=d T$, show that
$\frac{d E}{d t}=(\mathbf{F} . \nabla U) \cdot \mathbf{r}+\mathbf{p}$, where $\mathbf{p}=\frac{\partial U}{\partial t}$
[5points]

## SECTION B

QUESTION 2
(a) In the figure above, a block slides down an inclined plane without friction.
(i) Compute its acceleration [3points]
(ii) Compute its velocity after it has moved a distance $x_{0}$ down the plane from rest. [5points]
(iii) If the coefficient of friction between the block and plane is $\mu_{s}=0.4$, at what angle
(b) Find the displacement of a particle undergoing vertical motion in a medium having a retarding force proportional to the velocity.

## QUESTION 3

(a) A system consists of a spring whose one end is fixed to an immovable wall while the other end is a mass mkg attached to it. The spring which has a spring constant k is stretched a distance x and released.
(i) Write down the equation of motion of the mass.
(ii) Solve the equation in a general form and decide which part of the equation satisfies the physical condition of the system.
(iii) What are the frequency and period of the oscillation mass?
[4points]
(iv) Compute the maximum potential energy and maximum kinetic energy of the mass. [6points]

## QUESTION 4

(a) Consider a projectile motion in two dimensions. Find the equation of motion in both Cartesian and polar coordinates.
[8points]
(b) (i)A particle is constrained to move on the inside surface of a smooth cone of half angle $\alpha$.The particle is subject to a gravitational force. Determine a set of generalized coordinates and find the constraints.
(ii) Find the Lagrange's equations of motion
[5points]

