TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT BUILDING AND CIVIL ENGINEERING UNIVERSITY EXAMINATION FOR:BSC IN CIVIL ENGINEERING
ECE 2411:TRAFFIC ENGINEERING IIEND OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS
DATE:11May2016
Instructions to Candidates
You should have the following for this examination-Answer Booklet, Drawing Instruments, Scientific calculator, examination pass and studentIDThis paper consists of five questions. Attemptquestion ONE (Compulsory) and any other TWOquestions
THE TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SCIENCE
CIVIL ENGINEERINGECE 2411
END OF SEMESTER EXAMINATIONSERIES: MAY 2016
TIME: 2 HOURS

[^0]- Answer booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of TWO printed pages

ECE 2411 TRAFFIC ENGINEERING II

SECTION A (COMPULSORY -30 MARKS)

QUESTION ONE

a. With the aid of diagrams and equations,discuss traffic flow stationarity. (5marks)
b. With respect to microscopic flow of traffic show from first principles that;
i. $\quad \mathrm{k}(\mathrm{x}, \mathrm{t}, \mathrm{s})=$ total time spent by all vehicles in s area (s)

> and
ii.
$\mathrm{q}(\mathrm{x}, \mathrm{t}, \mathrm{s})=$ total distance covered by vehicles in s area (s)
while explaining all the variables and using suitable diagrams for the derivations
(7mark)
c. i. Distinguish the terms "space occupancy" and "occupancy" and define relative occupancy 'b' mathematically.
ii. Consider a stream of traffic with with speed of $80 \mathrm{~km} / \mathrm{hr}$ and headway of 3seconds.All vehicles are 6 metres in length.What is the relative occupancy?
iii. What is the difficulty in using the mathematical formula of relative occupancy in practical situations?
(6marks)
d. Discuss the 'continuum approximation' to a discrete flow while explaining its validity scheme.
(6marks)

SECTION B (Answer any TWO questions from this section)

QUESTION TWO

a. Briefly explain what a road hierarchy is
b. i. Outline the main objectives of a road hierarchy
ii. State FOUR ways in which hierarchy principles assist planning agencies in the development in the development of policies relating to management of roads
c. Briefly describe the FOUR main functional levels of a road hierarchy in relation to land use

QUESTION THREE

a. Explain the following methods used to assign traffic in given networks
i. All-Or-Nothing
ii. Capacity Restraint
iii. Incremental Assignment
b. Two routes connect a city and a suburb.During the peak-hour morning commute, a total of 4500 vehicles travel from the suburb to the city.Route 1 has a 96 kph speed limit and is 9.6 km in length;route 2 is 4.8 km in length with a 72 kph speed limit.Studies show that the total travel time on route 1 increases two minutes for every additional 500vehicles added.Minutes of travel time on route 2 increases with the square of the number of vehicles expressed in thousands of vehicles per hour.Determine user equilibrium travel times.
(Make the necessary assumptions)

QUESTION FOUR

i. Discuss graph theory.
ii. Differentiate coverage from connectivity with regard to quantitative description of road network,stating clearly how each can be measured.Further,outline two other criteria used to describe road network in a quantitative manner. (7marks)
iii. Discuss the law of conservation of vehicles with respect to traffic flow in a transportation network (4marks)
iv. With the aid of sketches, describe the three main types of road network patterns (6marks)
v. Consider a stream of traffic with mean speed of $60 \mathrm{~km} / \mathrm{hr}$ and a flow rate of 1200vehicles/hour.All vehicles are 4metres in length. What is the relative occupancy?
(3marks)

QUESTION FIVE

a. Using the fundamental diagrams describe the following terminologies:

i.	Completely free flowing traffic	$(2 \mathrm{marks})$
ii.	Saturated traffic	$(2 \mathrm{marks})$
iii.	Capacity traffic	$(2 m a r k s)$

b. With the aid of diagrams describe the following three traffic regimes:
i. Free flow
(3marks)
ii. Congested flow (3marks)
iii. Capacity flow (3marks)
c. Digo road highway section between Moi Avenue/Nkuruma Road and Jomo Kenyatta Avenue (Barclays Bank) round about measures 1.6km and has a capacity of 1400 vphpl .
i. What is the LOS "C" capacity of the principal Mombasa City arterial?
ii. If the link's free flow speed is 72 kph and the standard values of \mathbf{a} and \mathbf{b} are used (Bureau of Public Roads-BPR function), what is the link travel time for traffic flow rates $\mathrm{V}=0, \mathrm{~V}=500, \mathrm{~V}=1000$, and $\mathrm{V}=1500$? (5marks)

[^0]: Instructions to Candidates:
 You should have the following for this examination

