

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF BUILDING AND CIVIL ENGINEERING UNIVERSITY EXAMINATION FOR:

BSC IN CIVIL ENGINEERING

ECE 2410 : HYDROLOGY II

END OF SEMESTER EXAMINATION

SERIES:APRIL2016

TIME:2HOURS

DATE:10May2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, Drawing Instruments, Scientific calculator, examination pass and student ID

This paper consists of five questions.

Attemptquestion ONE (Compulsory) and any other TWO questions.

Question ONE (Compulsory)

- a). Discuss assumptions made during derivation of unit hydrograph (8 Marks).
- b). What is the difference between excess rainfall hyetograph and abstractions? (6 Marks).
- c). Determine the direct runoff, Φ index and the excess rainfall hyetograph from the observed rainfall and the stream flow data given in Table 1 below. The area of the watershed is 7.03 mi² (16 Marks).

Table 1 : Determination of Excess Rainfall Hyetograph (ERH)

Time	Obse	erved	Direct Run off (cfs)	Excess rainfall
	Rain (in)	Flow (cfs)		
8.30	0.17	205		

9.00	0.28	246	
9.30	1.33	283	
10.00	2.20	828	
10.30	2.08	2323	
11.00	0.20	5700	
11.30	0.09	9531	
12.00		11040	
12.30		8300	
1.00		4323	
1.30		2260	
2.00		1802	
2.30		1230	
3.00		715	
3.30		394	
4.00		354	
4.30		303	

Question TWO

- a). Differentiate between flood frequency curve and the flood duration curve (4 Marks).
- b). Fill the table 2 below to determine $P(X \ge x_m)$ and the return period (T) (16 Marks)

Table 2: For the determination of recurrence period (T)

	Annual	Data			
Year	Max Q	arranged	Rank	$P(X \ge x_m)$	T
1950	804	3069			
1951	1090	1982			
1952	1580	1657			
1953	487	1651			

1954	719	1642		
1955	140	1586		
1956	1583	1583		
1957	1642	1580		
1958	1586	1543		
1959	218	1303		
1960	623	1254		

Question THREE

3 a).	Why	is rational formula important in hydrology? Discuss the assumpti	ons and the
precau	tions th	at are made when using the formula	(8 Marks).
b).	Define	the following terms as use in a unit hydrograph	
	i).	Rainfall intensity	(1 Mark).
	ii).	Time of concentration	(1 Mark).
	iii).	Overland flow	(1 Mark).
	iv).	Soil Conservation Service	(1 Mark).
3b).	Make	short notes under the following subtopics	

(2 Marks).

i).

Rating curve

- ii). Flood recurrence Interval (2 Marks).
- iii). Mean Daily Discharge (2 Marks).
- iv). Mean Annual Discharge (2 Marks).

Question FOUR

The following inflow and outflow hydrographs were observed in a river reach. Estimate the values of K and x applicable to this reach for the use in the Muskingum equation (20 Marks).

T(hrs.) 0	6	12	18	24	30	36	42	48	54	60	66
Inflow 5 (m^3/s)	20	50	52	32	22	15	10	7	5	5	5
Outflow 5 (m^3/s)	6	12	30	40	36	29	23	18	14	9	8

Question FIVE

Given the table 2 below, fill in to determine the Direct Runoff Hydrograph (20 Marks).

Table 4

Time	UH ₃	0.5 UH ₃	1.5 UH ₃	3- hrs lagged 1.5UH ₃	6- hrs lagged 1.5UH ₃	DRH
(hrs)	(cfs/in)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0	0					
1	40					

2	100			
3	140			
4	180			
5	200			
6	195			
7	150			
8	135			
9	110			
10	80			
11	50			
12	24			
13	0			
14	0			
15	0			
16	0			
17	0			
18	0			