

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY 14S & 15S

ACH.4212: CHEMISTRY OF CARBOHYDRATES AND PROTEINS

END OF SEMESTER EXAMINATION

SERIES: APRIL2016

TIME:2HOURS

DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

(a) Define the following terms citing an example in each case

	i)	Carbohydrates	(3mks)		
	ii)	Epimer	(2mk)		
	iii)	Electrophoresis	(2mk)		
	iv)	Mutarotation	(2mks)		
	v)	Amino acid	(1mk)		
	(b) G	Give reason (s) why			
	(i)	humans cannot utilize cellulose as a source of energy	(3mks)		
	(ii	Formation of OSAZONE stops further reaction	(2mks)		
	(ii) Fructose gives a positive test with Tollen's reagent while ketones will give	e a negative test for the		
		same reagent (3mks)			
	(iv) Glycogen is most suitable as a storage form of carbohydrates in animals	(2mks)		
	(c) D1	aw the products formed when			
©7	Technica	l University of Mombasa Pa	ige 1 of 3		

(i) Two α -D-Glucose molecules are joined together by α -1,4-glycosidie			linkage			
			(2mks)			
(i	(ii)	α -D-Glucose and fructose are bonded together to form sucrose	(2mks)			
(d) State						
(i) The acid-base character of amino acids		(2mks)				
(ii) FOUR applications of proteins		(2mks)				
(i	(iii)	TWO basic amino acids	(1mks)			
(i	(iv)	TWO acidic amino acids	(1mks)			
(i) St (i) (i (i (i (i)	(ii) State (i) The (ii) FO (iii) (iv)	 α-D-Glucose and fructose are bonded together to form sucrose acid-base character of amino acids UR applications of proteins TWO basic amino acids TWO acidic amino acids 	(2mk (2mk (2mk (2mk (1mk) (1mk			

Question TWO

(a) Draw a scheme to summarize the reactions of D-glucose with the following reagents

(i)	Br_2/H_2O	(2mks)
(ii)	Hydroxylamine(NH ₂ OH)	(2mks)
(iii)	Nitric acid	(3mks)
(iv)	Phenyl hydrazine	(3mks)
(v)	Acetic anhydride	(3mks)
(vi)	H ₂ /Ni	(3mks)
(vii)	Water	(2mks)
(viii)	Tollen's reagent	(2mks)

Question THREE

(a)	State any TWO	protecting agents commonly	(2mks)
-----	---------------	----------------------------	--------

(b) Outline how you would synthesize a specific dipeptide Ala-Gly in the following steps

Question FOUR

(a) Outlin	ne the steps involved in	
	(i) Kiliani Fischer synthesis for chain lengthening of D-arabinose to D-glucose	
		(10mks)
	(ii) Ruff degradation of D-glucose to D-arabinose	(10mks)
Question FI	VE	
(a) Expla	ain the following	
(i)	Amino acids are insoluble in diethyl ether but N-acetyl amino acids ar	e soluble
		(3mks)
(ii)	Tryptophan is not classified as a basic amino acid even though it has a	heterocycle containing
	nitrogen atom. Why is the N in the five membered ring of Tryptophan	not readily protonated.
	(3mks)	
(b) Draw	the structure of Glycine and Alanine at their isoelectric point	(4mks)
(c) Outlin	ne	
(i)	How you would test a solution for reducing sugar	(5mks)
(ii)	How you would test a sample for starch	(3mks)
(d) State	any TWO differences between amylose and amylopectin	(2mks)