TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:

BMCS/BSSC

AMA 4215: STATISTICS III END OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS

DATE:20May2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of Choose No questions. AttemptChoose instruction.
Do not write on the question paper.

Question ONE (30 MarkS)

Question 1 (30 marks)

(a) Fatal accidents occur at random at a known 'black spot', following a Poisson process with mean 4 per year.
(i) Draw a diagram of the probability mass function of X, the actual annual number of fatal accidents.
(ii) Determine the probability that in a given year there is at most one fatal accident.
(b) The random variable X follows the exponential distribution with rate parameter λ, so that the probability density function (pdf) of X is given by

$$
f(x)=\lambda e^{-\lambda x}, x>0, \lambda>0
$$

Given that the moment generating function of $X, M_{X}(t)$ say, is given by

$$
M_{X}(t)=\left(1-\frac{t}{\lambda}\right)^{-1}, t<\lambda,
$$

show that the mean and variance of X are given by $\frac{1}{\lambda}$ and $\frac{1}{\lambda^{2}}$ respectively
(6 marks)
(c) The bivariate probability distribution of the random variables X and Y is summarised in the following table.

		Y			
		0	1	2	3
X	0	k	$6 k$	$9 k$	$4 k$
	1	$8 k$	$18 k$	$12 k$	$2 k$
	2	k	$6 k$	$9 k$	$4 k$

(i) Find k.
(3 marks)
(4 marks)
(d) The distribution $f_{X, Y}(x, y)=\frac{1}{\sqrt{(2 \pi)}} e^{-0.5\left(x^{2}+y^{2}\right)}$ is a bivariate normal distribution. For this distribution, state $\sigma_{X}, \sigma_{Y}, \mu_{X}, \mu_{Y}, \rho$
(e) The joint density function of 2 random variables X and Y is given as

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
\frac{2}{5}(2 x+3 y), & 0<x<1, \tag{4marks}\\
0, & 0<y<1 \\
\text { elsewhere }
\end{array}\right.
$$

(i) Verify that $f_{X, Y}(x, y)$ is a pdf
(ii) Find $P[(X, Y)] \in A$, where $A=\left\{(x, y) \left\lvert\, 0<x<\frac{1}{2}\right., \frac{1}{4}<y<\frac{1}{2}\right\}$

Question TWO (20 MarkS)

(a) Suppose X and Y are independent random variables having Poisson distributions with respective means λ (>0) and $\mu(>0)$.
(i) Show that $X+Y$ also follows a Poisson distribution.
(ii) Find $P(X=k \mid X+Y=n)$ (when k and n are integers with $0 \leq k \leq n$. For given fixed $n>0$, name the distribution you have obtained.
(b) Telephone calls arriving at a computer helpline are classed as urgent or standard; urgent calls average 8 per hour, standard calls average 24 per hour. Ten calls arrive within 30 minutes; find (to two significant figures) the probability that at most two of them are urgent, stating any assumptions you make.

Question THREE (20 MarkS)

The continuous random variables X and Y have joint probability density function $f(x, y)=k x y$ if $0<x<y<1$, with $f(x, y)=0$, elsewhere, where k is a constant.
(a) Evaluate k, and find the marginal probability densities of X and Y. Say, with a reason, whether or not X and Y are independent.
(10marks)
(b) Show that, for all non-negative integers r and $s, E\left(X^{r} Y^{s}\right)=\frac{8}{(r+2)(r+s+4)}$

Hence find the correlation between X and Y.
(10marks)

Question FOUR(20 Marks)

(a) Suppose X and Y are independent random variables, each following the chis-quared distribution with four degrees of freedom; this distribution has probability density function (pdf) $w e^{-w / 2} / 4$ on $w>0$.

Define new random variables $U=X / Y$ and $V=Y$. Obtain the joint pdf of U and V, and hence show that U has pdf $h(u)=(6 \mathrm{u}) /(1+\mathrm{u})^{4}$ for $u>.0$
[You may use without proof the result $\int_{0}^{\infty} t^{k} e^{-t} d t=k$! when k is a positive integer.]

Name the distribution followed by U in (a). Using the density function, show that $E(U)=2$, and hence verify that $E(X / Y)>E(X) / E(Y)$. Explain briefly why this is no surprise.
(10marks

Question FIVE(20 Marks)

(a) The random variables $X 1, X 2$ have the bivariate Normal distribution with expectation $u=\left(\mu_{1} \mu_{2}\right)^{T}$ covariance matrix $\sum=\left(\begin{array}{cc}\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\ \rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}\end{array}\right)$
(i) Write out explicitly the joint probability density function of $X 1$ and $X 2$.
(ii) State (without proof) the marginal distribution of $X 2$ and write out its marginal probability density function.
(1mark)
(iii) Hence obtain the conditional probability density function of $X 1$ given that $X 2=x 2$. Identify this as a Normal distribution with parameters that you should state explicitly.
(b) The random variables $X 1, X 2, X 3$ have the multivariate Normal distribution with expectation $u=\left(\begin{array}{lll}\mu_{1} & \mu_{2} & \mu_{3}\end{array}\right)^{T}$ and covariance matrix, $\sum=\left(\begin{array}{ccc}\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{3}^{2}\end{array}\right)$. Let $\sum_{23}=\left(\begin{array}{cc}\sigma_{2}^{2} & \sigma_{23} \\ \sigma_{23} & \sigma_{3}^{2}\end{array}\right)$, a sub-matrix of \sum . In general, the conditional distribution of $X 1$ given that $X 2=x 2, X 3=x 3$ is a Normal distribution with

$$
\begin{aligned}
& E\left(X_{1} \mid x_{2}, x_{3}\right)=\mu_{1}+\left(\begin{array}{ll}
\sigma_{12} & \sigma_{13}
\end{array}\right) \Sigma_{23}^{-1}\binom{x_{2}-\mu_{2}}{x_{3}-\mu_{3}}, \\
& \operatorname{Var}\left(X_{1} \mid x_{2}, x_{3}\right)=\sigma_{1}^{2}-\left(\begin{array}{ll}
\sigma_{12} & \sigma_{13}
\end{array}\right) \Sigma_{23}^{-1}\binom{\sigma_{12}}{\sigma_{13}}
\end{aligned}
$$

Obtain the parameters of the conditional distribution of $X 1$ given that $X 2=x 2, X 3=x 3$ in the special case where $X 2$ and $X 3$ are independent random variables. Find an expression for the multiple correlation of $X 1$ on both $X 2$ and $X 3$ in this case.
(10 marks)

