FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF MATHEMATICS AND COMPUTER SCIENCE \& BACHELOR OF SCIENCE IN STATISTICS AND COMPUTER SCIENCES

AMA 4209: CALCULUS III
END OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS
DATE:Pick DateMay2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

QUESTION ONE (COMPULSORY, 30Marks)

a) Find the $\lim _{t \rightarrow \infty} \frac{t^{2}+t}{2 t^{2}+1}$
(2 marks)
b) Two stationary patrol cars with radars are 5 km apart on a high way and a truck passes the first patrol car, its speed is clocked at $55 \mathrm{~km} / \mathrm{h}$. Four minutes later, when the truck passes the second patrol car, its speed is clocked at $50 \mathrm{~km} / \mathrm{h}$. Prove that the truck must have exceeded the speed limit of $60 \mathrm{~km} / \mathrm{h}$ at some point during the interval.
c) Apply the integral test to the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$. To determine divergence or convergence (5marks)
d) Use Maclaurin theorem to expand the function $f(x)=e^{2 x}$ upto the term with x^{5}.
e).Determine convergence/divergence of the series $\sum_{n=0}^{\infty} \frac{n^{2} 2^{n+1}}{3 n}$ using ratio test.(5mks).
f) The equation $x z+y \ln x-x^{2}+4=0$ defines x as a differentiable function of two independent variables y and z, find $\frac{\partial x}{\partial y}, \quad \frac{\partial x}{\partial z}$ at the point $(1,-1,-3) . \quad$ (6 marks)
g) Find the rectangular form of the polar function $r=2 \cos 2 \theta$

QUESTION TWO (20 Marks)

a) Evaluate $\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{2}+6}}{5-2 x}$
(5marks).
b).Test whether the sequence $\left\{a_{n}\right\}$ where $\left\{a_{n}\right\}=\frac{n^{2}}{(n+1)^{2}}$ is convergence and find its limit (5 Marks)
c). Find the value of $\frac{d f}{d t}$ at $t=0$ if $f(x, y, z)=x y+z$ and $x=\cos t, y=\sin t, z=t$. (5 marks)
d). Find the area of the region R bounded by $y=x$ and $y=x^{2}$ in the first quadrant. (5 marks)

QUESTION THREE (20MKS)

a) Calculate the volume bounded by $f(x, y)=1-6 x^{2} y$ on the region

$$
\begin{equation*}
R: 0 \leq x \leq 2, \quad-1 \leq y \leq 1 . \tag{4marks}
\end{equation*}
$$

b) Find the Taylor polynomials $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ and P_{4} for $f(x)=\ln x$ contained at $c=1$.
c) Evaluate $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$.
d) Find the sum of the geometric series $\sum_{n=0}^{\infty} \frac{3}{2^{n}}$.

QUESTION FOUR (20 Marks)

a) Find the rectangular coordinates corresponding to the polar coordinate $\left(2, \frac{2 \pi}{3}\right)$.
(4 marks)
b).The probability density function $f(x)=\frac{t}{1+x^{2}}$ has the area under the curve in the interval
$(-\infty, \infty)$ Equals to 1 . Determine the values of t.
c).). Determine if the function is convergent or divergent

$$
\begin{equation*}
\int_{0}^{3} \frac{1}{\sqrt{3-x}} d x \tag{4marks}
\end{equation*}
$$

d) Find the total differential of $z=x^{3} y+x^{2} y^{2}+x y^{3}$ (4 marks)

QUESTION FIVE (20 Marks)

a) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} 3(x-2)^{n} \quad$ (4 marks)
b) Find a sequence $\left\{a_{n}\right\}$ whose first five terms are $\frac{2}{1}, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9} \ldots$ and determine whether it converges or diverges. (6 marks)
c) Let R be the square $\{(x, y) \mid-1 \leq x \leq 1,-1 \leq y \leq 1\}$. Calculate the volume of the solid region determined by the graph of $f(x, y)=8-x^{2}-y^{2}$ over R. (6 marks)
d) Evaluate $\frac{\lim }{x \rightarrow 0} \frac{\tan x-x}{x^{3}}$

