

TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence
Faculty ofötppfied \& Feafth epciences
DEPARTMENT OF MATHEMATICS AND PHYSICS
UNIVERSITY EXAMINATION FOR THE FIRST SEMESTER IN THE SECOND YEAR OF BACHELOR OF SCIENCE IN CIVIL AND MECHANICAL ENGINEERING

MAY 2016 SERIES EXAMINATION
UNIT CODE: SMA 2279

UNIT TITLE: LINEAR AND BOOLEAN ALGEBRA

TIME ALLOWED: 2HOURS

PAPER A

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of FIVE questions and TWO sections A and B.
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages.

SECTION A (COMPULSORY)

Question ONE (30 marks)
a. Prove that the diagonals of a rhombus are perpendicular.
(5 marks)
b. Let P be the point $(2,1,1), Q$ be the point $(0,-2,3)$ and O be the origin. Find
i. The length of $P \vec{Q}$
ii. $\quad \underset{\sim}{a} \cdot \underset{\sim}{b}$ where $\underset{\sim}{a}=\vec{O} P$ and $\underset{\sim}{b}=O \vec{Q}$
iii. The angle between $\underset{\sim}{a}$ and $\underset{\sim}{b}$
c. Let $\underset{\sim}{a}=2 i+j-k$ and $\underset{\sim}{b}=4 i-3 j+5 k$. Find a unit vector \hat{n} orthogonal to both $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
d. Find the equation of the plane through $(-1,2,3)$ and perpendicular to the planes
$2 x-3 y+4 z=1$ and $3 x-5 y+2 z=3$.
e. Use Cramer's rule to determine the solution to the system of equations:- (7 mark)

$$
\begin{aligned}
& 3 x_{1}-x_{2}+5 x_{3}=-2 \\
& -4 x_{1}+x_{2}+7 x_{3}=10 \\
& 2 x_{1}+4 x_{2}-x_{3}=3
\end{aligned}
$$

SECTION B

QUESTION TWO (20 MARKS)

(a) Use Gauss Seidel iterative technique to find the approximate solution correct to three decimal places:-

$$
\begin{aligned}
& 54 x+y+z=110 \\
& 2 x+15 y+6 z=72 \\
& -x+6 y+27 z=85
\end{aligned}
$$

Take the initial approximate as $x_{0}=y_{0}=z_{0}=0$ for five iterates only.
(9 marks)
(b) Find the solution of the following systems by Gauss-Jordan elimination method.(11 marks)

$$
\begin{aligned}
& x-3 y+4 z=12 \\
& 2 x-y-2 z=-1 \\
& 5 x-2 y-3 z=3
\end{aligned}
$$

QUESTION THREE (20 MARKS)

a. Find the inverse $\left(A^{-1}\right)$ of the following matrix if it exists by row reduction method.

$$
A=\left(\begin{array}{ccc}
2 & 1 & 1 \tag{10marks}\\
-5 & -3 & 0 \\
1 & 1 & -1
\end{array}\right)
$$

b. Reduce the following matrix into row echelon form:

$$
A=\left(\begin{array}{llcc}
3 & 4 & -1 & 1 \\
1 & -1 & 3 & 1 \\
4 & -3 & 11 & 2
\end{array}\right)
$$

c. Compute $A C$ and $C A$ if possible given that

$$
A=\left(\begin{array}{lrcc}
1 & -3 & 0 & 4 \\
-2 & 5 & -8 & 9
\end{array}\right), \quad C=\left(\begin{array}{ccc}
8 & 5 & 3 \\
-3 & 10 & 2 \\
2 & 0 & -4 \\
-1 & -7 & 5
\end{array}\right)
$$

(a) Given $A=\left(\begin{array}{ccc}4 & 2 & 1 \\ -2 & -6 & 3 \\ -7 & 5 & 0\end{array}\right)$,
(i). Find the matrix of cofactors of A.
(4 marks)
(ii). Find adjoint of matrix $\mathrm{A}(\operatorname{Adj} A)$
(iii). Calculate determinant of matrix $\mathrm{A}(|A|)$
(2 marks)
(iv).Using (ii) and (iii) above, Find A^{-1}
(b) Use Jacobi iterative technique to find the approximate solution correct to two decimal places:-

$$
\begin{aligned}
& 5 x-y+z=10 \\
& 2 x+8 y-z=11 \\
& -x+y+4 z=3
\end{aligned}
$$

Take the initial approximate as $x_{0}=y_{0}=z_{0}=0$ for five iterates only. (10 marks)
a. Consider the matrix $A=\left(\begin{array}{ccc}3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3\end{array}\right)$,
(i) Find the eigenvalues λ_{i} and eigenvectors V_{j} associated with the above matrix. (10 marks)
(ii) Show that the eigenvectors obtained in (i) above are linearly independent. (3 marks)
b. Complete the truth table of the following

p	q	$\sqcup \mathrm{p}$	$\sqcup \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$	$(\mathrm{p} \leftrightarrow q)$
T	T					
T	F					
F	T					
F	F					

