Question one (compulsory)

a) Briefly explain the meaning of the following:

(i)	Arc	(1mark)
(ii)	Chord	(1mark)
(iii)	Segment	(1mark)
(iv)	Sector	(1mark)

b) Find the wavelength, amplitude and phase angle of the following:
(i) $y=-\sin (3 x+60)$
(3marks)
(ii) $\quad-2 y=3 \cos (x+30)$
(3marks)
c) Calculate the angles in a triangle whose lengths are $5.5 \mathrm{~cm}, 4.2 \mathrm{~cm}$ and 3.8 cm (5marks)
d) If $\mathrm{u}=\mathrm{v}$ and $u=h i+3 i-j+4 k+l k \quad v=5 i-j+6 k$ where h and k are constant. Calculate the values of h and l
e) A stool is made up by shaping a tree stump into a conical frustum of vertical height 60 cm . If the top radius is 12 cm and the bottom one is 24 cm . calculate the surface area of the stool.
(8marks)
f) Convert the following angles into radians
(i) 10^{0}
(ii) 180^{0}
(iii) 270^{0}
(1marks)
(1marks)
(1marks)

Question Two

a) Solve for θ such that $0 \leq \theta \leq 360^{\circ}$ and $2 \sin ^{2} 2 \theta+\sin 2 \theta-1=0$
b) When the angle of elevation of the sun is 58°, a vertical pole casts a shadow of length 5 m on a horizontal ground; calculate the height of the pole.
(3marks)
c) Find the number of sides of:
(i) A polygon having sum of interior angles $1080^{\circ} \quad$ (2marks)
(ii) A regular polygon if each exterior angle is 24°
(3marks)
d) A ship leaves port P through port Q . Q is 200 km on a bearing of 220° from P . R is 420 km on a bearing of 140° from Q .
(i) Using a suitable scale, draw a diagram showing the relative positions of the ports P , Q and R.
(3marks)
(ii) By further drawing on the same diagram determine how far R is east of P .
(3marks)

Question Three

a) Given the vectors $\mathrm{AB}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $\mathrm{BC}=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$ work out.
(i) $\mathrm{AB}+\mathrm{BC}$
(ii) $\quad \frac{1}{2} \mathrm{BC}$
(iii) $\mathrm{AB}-2 \mathrm{BC}$
b) PQRS is a trapezium where PQ is parallel to SR, PR and SQ intersect at X so that $\mathrm{SX}=k \mathrm{SQ}$ and $\mathrm{PX}=h \mathrm{PR}$ where h and k are constants. Vectors $\mathrm{PQ}=3 \mathbf{q}$ and $\mathrm{PS}=\mathbf{s}$. $\mathrm{SR}=\mathbf{q}$.
(i) Show this information on a diagram
(ii) Express vector SX in terms of $k, \mathrm{~s}$ and q
(iii) Express vector SX in terms of $h, \mathrm{~s}$ and q
(3marks)
(iv) Find h and k
(4marks)
c) Prove the following identity

$$
\frac{(\cos \theta-\sin \theta)^{2}}{\cos \theta}=\sec \theta-2 \sin \theta
$$

(5marks)

Question Four

a) Construct a triangle ABC in which $\mathrm{AB}=4.5 \mathrm{~cm}, \mathrm{BC}=6.5 \mathrm{~cm}$ and $\mathrm{AC}=7.5 \mathrm{~cm}$. construct an escribed circle opposite to angle BAC. Measure the radius of the circle.
(7marks)
b) A plane flying at 200 knots left an airport $\mathrm{A}\left(13^{0} \mathrm{~N}, 31^{\circ} \mathrm{E}\right)$ and flew due north to an airport $\mathrm{B}\left(30^{0} \mathrm{~N}, 31^{0} \mathrm{E}\right)$
(i) Calculate the distance covered by the plane in nautical miles
(3marks)
(ii) After 20mins stop over at B , the plane flew due east to an airport $\mathrm{C}\left(30^{0} \mathrm{~N}, 13^{0} \mathrm{E}\right)$ at the same speed. Calculate the distance covered by the plane between B and C in nautical miles.
(4marks)
(iii) Calculate the total time taken to complete the journey from airport B to C .
(3marks)
c) Solve for θ given $0 \leq \theta \leq 360^{\circ}$ and $4 \sin 2 \theta+1=0$
(3marks)

Question Five

a) Show that a triangle of sides 7,24 and 25 is a right angled triangle.
(3marks)
b) Draw a triangle PQR such that $\angle \mathrm{PQR}=75^{\circ}$ line $\mathrm{PQ}=5.3 \mathrm{~cm}$ and line $\mathrm{QR}=4.5 \mathrm{~cm}$.construct the locus of all points 2.5 cm from Q and equidistant from P and R . mark this locus with P_{1} andP ${ }_{2}$. Measure $\mathrm{P}_{1} \mathrm{P}_{2}$
(8marks)
c) Solve for θ given that:
(i) $\sin \theta=\cos 15$
(3marks)
(ii) $\sin (\theta+20)=\cos (3 \theta+30)$
(3marks)
d) The angle of depression of a boat from the top of a cliff is 65°. If the boat is 4 m from the foot of the cliff. Calculate the height of the cliff.
(3marks)

