

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BTMB

PAPER 2

ABT 4405: BIOINFORMATICS

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME:2 HOURS

DATE:Pick DateMay 2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

Question ONE

a. Define the following terms.

i. Biological database 1 mark

ii. Accession number 1 mark

iii. Biosis 1 mark

b. Give the meaning of the following terms:

i. ASCII ½ mark

ii. PSSM ½ mark

iii. XML ½ mark

iv. UPGMA ½ mark

©Technical University of Mombasa

Page **1** of **4**

c. Describe the BSML file format.	6 marks
d. Outline any FIVE limitations of bioinformatics.	5 marks
e. Distinguish between Parsimony and Maximum likelihood tree building algorithms.	4 marks
f. You are given the following pairs of sequences:	
 DDBICEKDDATU DRBICEKADATM 	
3. CBOCADACTUMD4. CKECADAGTUUD	
 a. Calculate similarity scores between the pair of sequences using an identity matrix mismatch=0, and match=1). 	(assume 4 marks
g. Describe the following primary protein sequence database.	6 marks
i. PDB	
ii. TrEMBL	
Question TWO	
Explain the following BLAST programs.	
i. Tblastx	10 marks
ii. Blastx	10 mark
Question THREE	
a. Explain the general guidelines to consider when designing primers.	8 marks
b. Describe FOUR bioinformatic tools you would use to design primers.	8 marks

c. Use the Standard Code for Information Interchange table below to solve the following.

	30	40	50	60	70	80	90	100	110	120
0		(2	<	F	P	Z	d	n	x
1)	3	=	G	Q	[e	O	y
2		*	4	>	H	R	\	f	p	Z
3	!	+	5	?	I	S]	g	\mathbf{q}	{
4	,,	,	6	@	J	T	^	h	r	
5	#	-	7	A	K	U	_	i	S	}
6	\$		8	В	L	V		j	t	~
7	%	/	9	\boldsymbol{C}	M	W	a	k	u	DEL
8	&	0	:	D	N	X	b	1	\mathbf{v}	
9	,	1	;	E	O	Y	c	m	w	

Given a character w

i. Calculate the corresponding Phred quality score based on fastq-solexa format.

4 marks

Question FOUR

a. Using an illustration, explain the position specific iterative-BLAST (PSI-BLAST) approach.

8 marks

b. Use the BLOSUM 62 and PAM250 substitution matrices below to solve the following questions

BLOSUM 62 PAM250 ARNDCOEGHILKMFPSTWYV ARNDCOEGHILKMFPSTWY -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 R -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 N 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -3 0 1 0 -4 -2 -2 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 D 0 -1 2 4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2 C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 C -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 Q 0 1 1 2 -5 4 2 -1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -4 -2 E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2 G 0-2 0-1-3-2-2 6-2-4-4-2-3-3-2 0-2-2-3-3 G 1 -3 0 1 -3 -1 0 5 -2 -3 -4 -2 -3 -5 0 1 0 -7 -5 -1 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 H-1 2 2 1-3 3 1-2 6-2-2 0-2-2 0-1-1-3 I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 I -1 -2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 -2 -1 0 -5 -1 4 L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 K -1 3 1 0 -5 1 0 -2 0 -2 -3 5 0 -5 -1 0 0 -3 -4 M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 1 M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -4 -2 F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9 -5 -3 -3 0 7 -1 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1 S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 1 -2 -3 -1 T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -2 -1 1 5 -2 -2 0 T 1-1 0 0-2-1 0 0-1 0-2 0-1-3 0 1 3-5-3 0 W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 0 -6 Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 -2 V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 V 0 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4

Given the pairs of sequences below;

- 1. DWSDEVKA
- 2. YWSDEVKA

- 3. DEVKDWSA
- 4. DEKVDWSS

Calculate similarity scores between these sequences using:

i. PAM250 matrix 4 marks

ii. Identity matrix (assume match =2, and mismatch =0) 4 marks

iii. BLOSUM 62 matrix 4 marks

Question FIVE

a. Distinguish between ENZYME and REBASA databases. 14 marks

b. Describe three bioinfomatic tools you would use to align two sequences. 6 marks