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This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other 

TWO questions. 
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QUESTION ONE (30 MARKS) 

a. Solve the linear PDE  3 5 tan ( 3 )p q z y x        (5 marks) 

b. Derive a PDE by eliminating the arbitrary function   from the equation  
3 3 3 3 2 2( , 2 )x y z z x y   

       (6 marks) 

c. A semi-infinite bar (extending from 0x  to x ) with insulated sides is initially at the 

uniform temperature .00 Cu   At time ,0t  the end at 0x  is brought to Cu 0100  and 

held there.  Use Laplace transform to find the temperature distribution in the bar as a function 

of x  and .t            (10 marks) 

 



d. Find the equation of the surface satisfying the equation 4 2 0yzp q y    and passing through 

2 2 1, 2y z x z    .        (9 marks) 

 

 

Question TWO   (20 marks) 

a. Find the general solution of 
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       (10 marks) 

b.  Use the method of separation of variables to solve the initial value problem  

              2x tu u   subject  to  3( ,0) 6 xu x e       (10 marks) 

 

Question THREE   (20 marks) 

a. Derive a PDE by eliminating the arbitrary constants a  and b from  
2 2z ax by ab    .        (5 marks) 

b. A string of length L is stretched between points  0,0  and  0,L  on the x  axis. At time 

0t  it has a shape given by ( ), 0f x x L   and it is released from rest. Find the 

displacement of the string at any latter time.     (15 marks) 

 

Question FOUR   (20 marks) 

a. Show that the Laplace’s equation  2 0u   is satisfied by the function 
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    (6 marks) 

b. Solve  the interior Dirichlet problem for a rectangle defined by Laplace’s equation  

PDE:     2 0u   ,      0 x a  ,       0 y b      subject to the boundary conditions 

 BC’s:    ( ,0) ( , ) 0u x u a y  ,    (0, ) 0u y  ,     ( , ) 0u x b  , ( ,0) ( )u x f x  (14 marks) 

 



Question FIVE   (20 marks) 

a. Show that the orthogonal trajectories on the hyperboloid 1222  zyx  of a conic in which 

it is cut by the system of planes cyx   are the curves of intersection with the family of  

surfaces   kzyx  where k  is a parameter.              (13marks) 

b. Find the integral curves of the equations 
xz
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  (7 Marks) 

 

A SHORT TABLE OF LAPLACE TRASFORMS 
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