TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRICAL \& ELECTRONICS
ENGINEERING, BUILDING \& CIVIL ENGINEERING AND MECHANICAL \& AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING, MECHANICAL ENGINEERING \& ELECTRICAL ENGINEERING

SMA 2371: PARTIAL DIFFERENTIAL EQUATIONS

END OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS
DATE: Pick DateMay2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper. PAPER 2

QUESTION ONE (30 MARKS)

a. Solve the linear PDE $p+3 q=5 z+\tan (y-3 x)$
b. Derive a PDE by eliminating the arbitrary function ϕ from the equation $\phi\left(x^{3}+y^{3}+z^{3}, z^{3}-2 x^{2} y^{2}\right)$
c. A semi-infinite bar (extending from $x=0$ to $x=\infty$) with insulated sides is initially at the uniform temperature $u=0^{\circ} C$. At time $t=0$, the end at $x=0$ is brought to $u=100^{\circ} C$ and held there. Use Laplace transform to find the temperature distribution in the bar as a function of x and t.
(10 marks)
d. Find the equation of the surface satisfying the equation $4 y z p+q+2 y=0$ and passing through $y^{2}+z^{2}=1, x+z=2$.
(9 marks)

Question TWO (20 marks)

a. Find the general solution of $\begin{aligned} \frac{d x_{1}}{d t} & =\frac{1}{2} x_{1}+\frac{1}{2} x_{2} \\ \frac{d x_{2}}{d t} & =\frac{-3}{2} x_{1}+\frac{5}{2} x_{2}\end{aligned}$
(10 marks)
b. Use the method of separation of variables to solve the initial value problem
$u_{x}=2_{t}+u$ subject to $u(x, 0)=6 e^{-3 x}$
(10 marks)

Question THREE (20 marks)

a. Derive a PDE by eliminating the arbitrary constants a and b from
$z=a x^{2}+b y^{2}+a b$.
b. A string of length L is stretched between points $(0,0)$ and $(L, 0)$ on the x axis. At time $t=0$ it has a shape given by $f(x), \quad 0 \leq x \leq L$ and it is released from rest. Find the displacement of the string at any latter time.

Question FOUR (20 marks)

a. Show that the Laplace's equation $\nabla^{2} u=0$ is satisfied by the function $u=\frac{1}{r}$ where

$$
\begin{equation*}
u=\frac{1}{\left[\left(x-x_{o}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{1}{2}}} \tag{6marks}
\end{equation*}
$$

b. Solve the interior Dirichlet problem for a rectangle defined by Laplace's equation PDE: $\quad \nabla^{2} u=0, \quad 0 \leq x \leq a, \quad 0 \leq y \leq b$ subject to the boundary conditions BC's: $\quad u(x, 0)=u(a, y)=0, \quad u(0, y)=0, \quad u(x, b)=0, u(x, 0)=f(x) \quad$ (14 marks)

Question FIVE (20 marks)

a. Show that the orthogonal trajectories on the hyperboloid $x^{2}+y^{2}-z^{2}=1$ of a conic in which it is cut by the system of planes $x+y=c$ are the curves of intersection with the family of surfaces $(x-y) z=k$ where k is a parameter.
b. Find the integral curves of the equations $\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}$

A SHORT TABLE OF LAPLACE TRASFORMS

$f(t)$	$L\{f(t)\}$
1	$\frac{1}{s}$
$e^{-a t}$	$\frac{1}{s+1}$
$\frac{\sin a t}{t}$	$\frac{\tan ^{-1} \frac{a}{s} \quad \text { for } \operatorname{Re} s>i m a}{s^{2}+a^{2}}$, for $\operatorname{Re} s>$ ima
$\sin a t$	for $\operatorname{Re} s>i m a$
$\cos a t$	$\frac{1}{2}\left(\tan ^{-1} \frac{a+b}{s}\right)+\tan ^{-1}\left(\frac{a-b}{s}\right)$ for $\operatorname{Re} s>0$
$\frac{1}{t} \sin a t \cos b t$	$\frac{1}{s} e^{-a \sqrt{s}}, \operatorname{Re} s>0$
$1-e r f\left(\frac{a}{2 \sqrt{t}}\right), a>0$	

