Department of mathematics and physic

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MARINE ENGINEERING
EMR 2117: ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION
 SERIES: $\operatorname{may} 2016$

TIME:2HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions
Answer question ONE(COMPULSORY) and any other TWO questions
Do not write on the question paper.

QUESTION ONE:

a)A ship leaves Mombasa ($4{ }^{0} \mathrm{~S}, 39^{\circ} \mathrm{E}$) due east for 98 hours to a point $\mathrm{K}\left(4^{0} \mathrm{~S}, 80^{0} \mathrm{E}\right)$ in the indian ocean.calculate its speed in
i) km / h
ii)knots (8mks)
b) i)Given $\cos 40=0.7660$, determine $\cos 20$ without using a table (4mks)
ii)If $\tan X=\operatorname{Cos} X$, show that $\sin X=\frac{1 \pm \sqrt{ } 5}{2} \quad$ (5 mks)
c) In triangle $A B C, A B=6 \mathrm{~cm}, A C=7 \mathrm{~cm}$ and $\angle B A C=50^{\circ}$. Determine the area of triangle $A B C$
(3mks)
d)Find all the angles between 0° and 360° which satisfy the following equations
i) $2 \cos ^{2}(x-60)=\sin 30^{\circ}$
ii) $3 \cos ^{2} 2 x+2 \cos 2 x-1=0 \quad$ (8 mks)
e)Determine the period and amplitude of the following trigonometric function
$y=1 / 2 \cos (1 / 2 x+30) \quad(2 m k s)$

Question TWO

a) i)Determine the distance in km and in nautical miles between two points $\mathrm{P}\left(30^{\circ} \mathrm{N}, 45^{\circ} \mathrm{E}\right)$ and $\mathrm{Q}\left(30^{\circ} \mathrm{N}, 60^{\circ} \mathrm{W}\right)$ (5 mks)
ii) if the local time of London $\left(52^{\circ} \mathrm{N}, 0^{\circ}\right)$ is 12.00 noon, determine the local time of Nairobi $\left(1^{\circ} \mathrm{S}, 37^{\circ} \mathrm{E}\right)$ (3mks)
b) i)derive the cosine rule . (6 mks)
ii) the perimeter of a triangular field is 120 m . Two of the sides are 21 m and 40 m . Calculate the largest angle of the fleld. (4mks)
c) Define trigonometry (2mks)

Question THREE

a) Prove the following identities
i) $\quad \sin 2 A=\cot A \quad(3 m k s)$ $1-\cos 2 A$
li) $\cos 2 a-\cos 4 a=\operatorname{cose} 2 a-1 \quad(3 m k s)$ $\sin 4 a$
b)i) Given that $\cos 2 x=49 / 81$, determine the $\sin x$ without using tables (3mks)
ii) without using tables determine tan A given that $\tan (A-45)=1 / 3 \quad$ (3mks)
c) i) if $\tan A=2 \tan B=7$, without using tables determine $\tan (2 A-B)$
(4 mks)
ii)Given $\cot (A-B)=8, \cot A=1 / 4$, determine without using tables $\cot B$

Question FOUR

a)The distance $P Q$ across a river is to be determined. A point R is 200 m from P and the angles QPR and $P R Q$ are 81° and 75° respectively.Calculate the distance $P Q$. (4mks)
b) A ship starts from a point A on a bearing of 053° and travels up to Point C, if the bearing of A from C is 290°, find how far C is from A and the distance from B to $C \quad$ (5 mks)
c) In triangle $A B C, \angle A=41^{\circ}, \angle B=90^{\circ}$ and $A C=25 \mathrm{~cm}$, calculate the length $A B$ and $B C$ (3 mks)
d)i) The position vector p of a point P is $\left[\begin{array}{l}3 \\ 6\end{array}\right]$ and the position vector q of a point Q is -3.3 . Find the
vector PQ and the position vector of the midpoint M of PQ
(4mks)
ii)Relative to the origin O, the points A and B have position vectors $a=3$ and $b=\left\{\begin{array}{l}1 \\ 4\end{array}\right]$ respectively. Given
that iand j are the unit vectors in the direction of x-axis and y-axis respectively,express a, b and $2(a-3 b)$ in terms of i and j. (4mks)

Question FIVE

a) In triangle $A B C, A B=6 C M, A C=7 C M$ and $\angle B A C=50^{\circ}$. Determine the area of the triangle $A B C$. (3 mks)
b) Draw an isosceles triangle $A B C$ with the base angles of 40° and $A B=A C=8 \mathrm{~cm}$.
ii)locate the centroid C and the circumcentre O
ii)draw the circumcircle and measure the circumradius..
(6mks)
c) Given triangle $A B C$ with $B C=6 \mathrm{~cm}, A B=8 \mathrm{~cm}$ and $\angle A B C=90^{\circ}$ locate the orthocenter and measure $A C$.

4mks)
d)i)A chord 12 cm long is on a circle of radius 10 cm . Find the distance of the chord from the centre of the circle.
ii)Two chords PQ and RS of the same circle are 11 cm and 13 cm long respectively. if they meet at T in the circle and TR is 3 cm , find $P T \quad(4 \mathrm{mks})$

