Question one (compulsory)

a) Explain the meaning of the following angles:

(i)	Supplementary angles	(1mark)
(ii)	Vertically opposite angles	(1mark)
(iii)	Obtuse angles	(1mark)

b) (i) Show that a triangle with sides 3,4 and 5 is aright angled triangle.
(3marks)
(ii) In a triangle $X Y Z, X Y=3.5 \mathrm{~cm}, Y Z=4.5 \mathrm{~cm}$ and $Z X=6.5 \mathrm{~cm}$. Calculate the size of angle XYZ.
(3marks)
c) Prove the following identities:
(i) $\cos ^{2} \theta+\sin ^{2} \theta=1$
(3marks)
(ii) $1+\tan 2 \theta=\sec ^{2} \theta$
(3marks)
(iii) $\tan \theta+\cot \theta=\sec \theta \operatorname{cosec} \theta$
(3marks)
d) A cone 16 cm high of base diameter 10 cm is cut parallel by a plane to the base and 9 cm from the base. Find the ratio of the two parts formed.
(8marks)
e) Calculate the height of a tree if a person is 1.84 m tall, and is standing 16 m away from the foot of the tree, if the angle of elevation from his eye is 20°.
(3marks)

Question Two

a) The interior angles of a hexagon are $\mathrm{x},(2 \mathrm{x}-30),(3 \mathrm{x}+10),(3 \mathrm{x}-10),(2 \mathrm{x}+10)$ and $(4 \mathrm{x}-70)$. Calculate the value of x .
(3marks)
b) In the figure below, $\mathrm{OR}=\mathrm{r}, \mathrm{OS}=2 \mathrm{r}, \mathrm{OP}=\mathrm{p}$ and $\mathrm{OQ}=3 / 2 \mathrm{p}$. Given that $\mathrm{QK}=\mathrm{mQR}$ and $\mathrm{PK}=$ nPS , find the two distinct expressions in terms of $\mathrm{p}, \mathrm{r}, \mathrm{m}$ and n for OK . By equating these expressions, find the value of m and n and hence calculate the ratios QK:KR and PK:KS.

(8marks)
c) A pyramid frustum has a square top and bottom with lengths of 6 cm and 10 cm respectively. The slant height of the frustum is 12 cm . if the frustum is open at both ends, calculate its surface area.
(6marks)
d) Find the wavelength, amplitude and phase angle of $y=3 \cos (2 t+30)$

Question Three

a) Draw a triangle ABC with $\angle \mathrm{BCA}=120^{\circ}, \mathrm{BC}=33 \mathrm{~cm}$ and $\mathrm{BA}=8.5 \mathrm{~cm}$. Show the locus of points 5 cm from C and equidistant from CA and CB . Mark this locus 1.
b) A person starts from point P and walks 5 km eastwards then 8 km northwards. How far and what is the bearing of his new [position from the starting point.
c) Brenda walks on a bearing of 120° for 5 km then on a bearing of 200° for 7 km . calculate:
(i) How far is she from her starting point
(ii) The bearing of her new position from her final position

Question Four

a) In the cuboid below, $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}$ and $\mathrm{GC}=11 \mathrm{~cm}$. calculate:
(i) The angle between the line AG and plane ABCD
(ii) The angle between lines AF and FC

b) Given the radius of the earth is 6400 km , calculate the radius of:
(i) latitude $40^{\circ} \mathrm{N}$
(2marks)
(ii) Longitude $20^{\circ} \mathrm{S}$
(2marks)
(iii) The equator
(2marks)
c) Two towns N and M are such that $\mathrm{M}\left(20^{\circ} \mathrm{N} .30^{\circ} \mathrm{E}\right)$ and $\mathrm{N}\left(20^{\circ} \mathrm{N}, 120^{\circ} \mathrm{E}\right)$. Take the earth's radius to be 6370 km .
(i) Calculate in kilometers, the shortest distance between M and N along the same longitude.
(3marks)
(ii) If the time at N is 0935 h , what is it at M .
(2marks)

Question Five

a) Solve for θ in the equation below:

$$
\begin{equation*}
\sin (\theta+20)=\cos (3 \theta+30) \tag{3marks}
\end{equation*}
$$

b) By drawing a suitable graph, solve for x in the equation $3 \cos (2 x+30)=2$ Such that $-90 \leq x \leq 180^{\circ}$.
(8marks)
c) Draw a triangle ABC with $\mathrm{ABC}=120^{\circ}, \mathrm{AB}=4.5 \mathrm{~cm} \mathrm{AC}=5.5 \mathrm{~cm}$.
(i) Measure BC
(4marks)
(ii) Draw the escribed circle opposite side BC and measure the distance from A to the circle's center.

